Skip to main content

Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Optical tweezers are flexible and powerful single-molecule tools that have been extensively utilized in biophysical studies. With their ability to stretch and twist DNA, and measure its force and torque simultaneously, they provide excellent opportunities to gain novel insights into the function of protein motors and protein-DNA interactions. Recently, a novel DNA supercoiling assay using an angular optical tweezers (AOT) has been developed to investigate torque generation during transcription. Here, we provide a detailed and practical guide to performing this technique. Using bacterial RNA polymerase (RNAP) as an example, we present protocols for constructing and calibrating an AOT instrument, preparing DNA templates, and acquiring and analyzing real-time data for transcription under DNA supercoiling. While these protocols were initially developed with E. coli RNAP, they can be readily adapted to study other DNA-based motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Travers A, Muskhelishvili G (2005) DNA supercoiling - a global transcriptional regulator for enterobacterial growth? Nat Rev Micro 3(2):157–169

    Article  CAS  Google Scholar 

  3. Kouzine F, Liu J, Sanford S, Chung H-J, Levens D (2004) The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol 11(11):1092–1100

    Article  CAS  PubMed  Google Scholar 

  4. Kouzine F, Sanford S, Elisha-Feil Z, Levens D (2008) The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15(2):146–154

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto K, Hirose S (2004) Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of drosophila. J Cell Sci 117(17):3797–3805

    Article  CAS  PubMed  Google Scholar 

  6. Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53(3):433–440

    Article  CAS  PubMed  Google Scholar 

  7. Tsao Y-P, Wu H-Y, Liu LF (1989) Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56(1):111–118

    Article  CAS  PubMed  Google Scholar 

  8. Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM (1999) Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 292(5):1149–1160

    Article  CAS  PubMed  Google Scholar 

  9. Samul R, Leng F (2007) Transcription-coupled hypernegative supercoiling of plasmid DNA by T7 RNA polymerase in Escherichia coli topoisomerase I-deficient strains. J Mol Biol 374(4):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kouzine F, Gupta A, Baranello L, Wojtowicz D, Ben-Aissa K, Liu J, Przytycka TM, Levens D (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20(3):396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340(6140):1580–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92(19):190801

    Article  CAS  PubMed  Google Scholar 

  14. Deufel C, Forth S, Simmons CR, Dejgosha S, Wang MD (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4(3):223–225

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Wang M (2014) Interplay between DNA supercoiling and transcription elongation. Transcription 5(3):e28636

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma J, Wang MD (2014) RNA polymerase is a powerful torsional motor. Cell Cycle 13(3):337–338

    Article  CAS  PubMed  Google Scholar 

  17. Forth S, Sheinin MY, Inman J, Wang MD (2013) Torque measurement at the single-molecule level. Annu Rev Biophys 42(1):583–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forties RA, Wang MD (2014) Discovering the power of single molecules. Cell 157(1):4–7

    Article  CAS  PubMed  Google Scholar 

  19. Forth S, Deufel C, Sheinin MY, Daniels B, Sethna JP, Wang MD (2008) Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys Rev Lett 100(14):148301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheinin MY, Wang MD (2009) Twist-stretch coupling and phase transition during DNA supercoiling. Phys Chem Chem Phys 11(24):4800–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheinin MY, Forth S, Marko JF, Wang MD (2011) Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. Phys Rev Lett 107(10):108102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheinin MY, Li M, Soltani M, Luger K, Wang MD (2013) Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat Commun 4:2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inman J, Forth S, Wang MD (2010) Passive torque wrench and angular position detection using a single-beam optical trap. Opt Lett 35(17):2949–2951

    Article  PubMed  PubMed Central  Google Scholar 

  24. Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394(6691):348–350

    Article  CAS  Google Scholar 

  25. Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE, Dholakia K (2001) Controlled rotation of optically trapped microscopic particles. Science 292(5518):912–914

    Article  CAS  PubMed  Google Scholar 

  26. Bishop AI, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2003) Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys. Rev. A 68(3):033802

    Article  CAS  Google Scholar 

  27. Funk M, Parkin SJ, Stilgoe AB, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2009) Constant power optical tweezers with controllable torque. Opt Lett 34(2):139–141

    Article  PubMed  Google Scholar 

  28. Gutiérrez-Medina B, Andreasson JOL, Greenleaf WJ, LaPorta A, Block SM (2010) An optical apparatus for rotation and trapping. Methods Enzymol 475:377–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pedaci F, Huang Z, van Oene M, Dekker NH (2012) Calibration of the optical torque wrench. Opt Express 20(4):3787–3802

    Article  PubMed  Google Scholar 

  30. Parkin S, Knöner G, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2006) Measurement of the total optical angular momentum transfer in optical tweezers. Opt Express 14(15):6963–6970

    Article  PubMed  Google Scholar 

  31. Huang Z, Pedaci F, van Oene M, Wiggin MJ, Dekker NH (2011) Electron beam fabrication of birefringent microcylinders. ACS Nano 5(2):1418–1427

    Article  CAS  PubMed  Google Scholar 

  32. Li P-C, Chang J-C, La Porta A, Yu ET (2014) Fabrication of birefringent nanocylinders for single-molecule force and torque measurement. Nanotechnology 25(23):235304

    Article  CAS  PubMed  Google Scholar 

  33. Forth S (2009) Angular optical trapping and its application to DNA structures. Dissertation. Cornell University

    Google Scholar 

  34. Marko JF (2007) Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E 76(2):021926

    Article  CAS  Google Scholar 

  35. Adelman K, La Porta A, Santangelo TJ, Lis JT, Roberts JW, Wang MD (2002) Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc Natl Acad Sci U S A 99(21):13538–13543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bai L, Fulbright RM, Wang MD (2007) Mechanochemical kinetics of transcription elongation. Phys Rev Lett 98(6):068103

    Article  CAS  PubMed  Google Scholar 

  37. Inman JT, Smith BY, Hall MA, Forties RA, Jin J, Sethna JP, Wang MD (2014) DNA Y structure: A versatile, multidimensional single molecule assay. Nano Lett 14(11):6475–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, Wang MD (2010) Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol 17(6):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shundrovsky A, Santangelo TJ, Roberts JW, Wang MD (2004) A single-molecule technique to study sequence-dependent transcription pausing. Biophys J 87(6):3945–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neuman KC, Abbondanzieri EA, Block SM (2005) Measurement of the effective focal shift in an optical trap. Opt Lett 30(11):1318–1320

    Article  PubMed  PubMed Central  Google Scholar 

  41. Deufel C, Wang MD (2006) Detection of forces and displacements along the axial direction in an optical trap. Biophys J 90(2):657–667

    Article  CAS  PubMed  Google Scholar 

  42. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390):902–907

    Article  CAS  PubMed  Google Scholar 

  44. Meng H, Bosman J, van der Heijden T, van Noort J (2014) Coexistence of twisted, plectonemic, and melted DNA in small topological domains. Biophys J 106(5):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Shanna Moore for commenting on this manuscript and Drs. Scott Forth, James Inman and Maxim Sheinin for the discussion and help. This work was supported by the Howard Hughes Medical Institute (to M.D.W.), the National Science Foundation grants (MCB-0820293 and MCB-1517764 to M.D.W.), the National Natural Science Foundation of China (NSFC-11674403 to J.M.), and the Fundamental Research Funds for the Central Universities (15lgjc15 to J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle D. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, J., Tan, C., Wang, M.D. (2018). Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics