Advertisement

Gangliosides pp 437-447 | Cite as

Glycoreplica Peptides

  • Teruhiko Matsubara
  • Toshinori SatoEmail author
  • Takao Taki
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1804)

Abstract

“Glycoreplica peptides” are prepared using a phage display peptide library and monoclonal antibodies that recognize the carbohydrate epitopes of glycoconjugate antigens. The peptides obtained not only mimic the shapes of original glycoconjugate antigens but also have some of their functions. We herein describe how to identify the amino acid alignments of glycoreplica peptides using phage display selection against carbohydrate-binding proteins. Target-specific peptides and proteins may be selected from the large repertory of a peptide/protein library using phage display technology. Glycoreplica peptides have the potential to become alternatives to carbohydrate ligands such as mimotopes for vaccinations and carbohydrate-derived drugs for carbohydrate-related diseases.

Keywords

Phage display technology Random peptide library Lectin Anti-carbohydrate antibody Glycosidase inhibitor 

Notes

Acknowledgment

This study was supported by the Japan Society for the Promotion of Science Kakenhi grants (no. 14380411 and 17300159 to T.S.; no. 15 K01806 to T.M.).

References

  1. 1.
    Taki T, Ishikawa D, Hamasaki H, Handa S (1997) Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on beta-galactosidase activity. FEBS Lett 418(1–2):219–223CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ishikawa D, Kikkawa H, Ogino K, Hirabayashi Y, Oku N, Taki T (1998) GD1alpha-replica peptides functionally mimic GD1alpha, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis. FEBS Lett 441(1):20–24CrossRefPubMedGoogle Scholar
  3. 3.
    Monzavi-Karbassi B, Hennings LJ, Artaud C, Liu T, Jousheghany F, Pashov A, Murali R, Hutchins LF, Kieber-Emmons T (2007) Preclinical studies of carbohydrate mimetic peptide vaccines for breast cancer and melanoma. Vaccine 25(16):3022–3031CrossRefPubMedGoogle Scholar
  4. 4.
    Hatakeyama S, Sugihara K, Shibata TK, Nakayama J, Akama TO, Tamura N, Wong SM, Bobkov AA, Takano Y, Ohyama C, Fukuda M, Fukuda MN (2011) Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A 108(49):19587–19592CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Matsubara T (2012) Potential of peptides as inhibitors and mimotopes: selection of carbohydrate-mimetic peptides from phage display libraries. J Nucleic Acids 2012:740982CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schwarz FP, Puri KD, Bhat RG, Surolia A (1993) Thermodynamics of monosaccharide binding to concanavalin a, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem 268(11):7668–7677PubMedGoogle Scholar
  7. 7.
    Derewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, Wan T, Campbell J (1989) The structure of the saccharide-binding site of concanavalin a. EMBO J 8(8):2189–2193PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Oldenburg KR, Loganathan D, Goldstein IJ, Schultz PG, Gallop MA (1992) Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci U S A 89(12):5393–5397CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Scott JK, Loganathan D, Easley RB, Gong X, Goldstein IJ (1992) A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci U S A 89(12):5398–5402CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takikawa M, Kikkawa H, Asai T, Yamaguchi N, Ishikawa D, Tanaka M, Ogino K, Taki T, Oku N (2000) Suppression of GD1alpha ganglioside-mediated tumor metastasis by liposomalized WHW-peptide. FEBS Lett 466(2–3):381–384CrossRefPubMedGoogle Scholar
  11. 11.
    Kieber-Emmons T (1998) Peptide mimotopes of carbohydrate antigens. Immunol Res 17(1–2):95–108CrossRefPubMedGoogle Scholar
  12. 12.
    Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394CrossRefPubMedGoogle Scholar
  13. 13.
    Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, Nagata K, Okahata Y, Sato T (2010) Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem 53(11):4441–4449.  https://doi.org/10.1021/jm1002183 CrossRefPubMedGoogle Scholar
  14. 14.
    Taki T, Ishikawa D, Ogino K, Tanaka M, Oku N, Asai T, Popa I, Portoukalian J (2008) A new approach for drug discovery from glycobiology and phage-displayed peptide library technology. Biochim Biophys Acta 1780(3):497–503CrossRefPubMedGoogle Scholar
  15. 15.
    Ladner RC, Sato AK, Gorzelany J, de Souza M (2004) Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today 9(12):525–529CrossRefPubMedGoogle Scholar
  16. 16.
    Smith GP, Petrenko VA (1997) Phage Display. Chem Rev 97(2):391–410CrossRefPubMedGoogle Scholar
  17. 17.
    Noren KA, Noren CJ (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23(2):169–178CrossRefPubMedGoogle Scholar
  18. 18.
    Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol 217:228–257CrossRefPubMedGoogle Scholar
  19. 19.
    Matsubara T, Onishi A, Yamaguchi D, Sato T (2016) Heptapeptide ligands against receptor-binding sites of influenza hemagglutinin toward anti-influenza therapy. Bioorg Med Chem 24(5):1106–1114.  https://doi.org/10.1016/j.bmc.2016.01.039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Teruhiko Matsubara
    • 1
  • Toshinori Sato
    • 1
    Email author
  • Takao Taki
    • 2
  1. 1.Department of Biosciences and InformaticsKeio UniversityKouhokuJapan
  2. 2.AGT & T Co. Ltd.OujinnchoJapan

Personalised recommendations