Advertisement

In Vitro Approaches to Identify Thyroid Hormone Receptor-Dependent Transcriptional Response

  • Maria Sirakov
  • Michelina PlaterotiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1801)

Abstract

The thyroid hormones act through their nuclear receptor TRs that are T3-modulated transcription factors. To elucidate the molecular mechanisms at the basis of specific physiological responses to TH-TR, in vitro approaches are commonly used to demonstrate the activation or repression of target genes. These approaches allow identifying direct transcriptional targets of TRs which can eventually be confirmed by using in vivo chromatin binding assays.

Here, we describe two classical approaches in vitro and in cell lines such as Electro-Mobility Shift Assay and thyroid-hormone-responsive Luciferase-reporter assay (EMSA and Luc, respectively) we have been largely using to investigate TRα1-driven TH-TRs intestinal epithelium cell autonomous action.

Key words

DNA binding Electro Mobility Shift Assay (EMSA) Luciferase assay (Luc) Target gene promoters Thyroid hormone Response Element (TRE) Transcriptional activity 

References

  1. 1.
    Holzer G, Roux N, Laudet V (2017) Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Mol Cell Endocrinol 459:5–13CrossRefPubMedGoogle Scholar
  2. 2.
    Sirakov M, Skah S, Nadjar J, Plateroti M (2013) Thyroid hormone’s action on progenitor/stem cell biology: new challenge for a classic hormone? Biochim Biophys Acta 1830:3917–3927CrossRefGoogle Scholar
  3. 3.
    Kinne A, Schulein R, Krause G (2011) Primary and secondary thyroid hormone transporters. Thyroid Res 4(Suppl 1):S7CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 116:2571–2579CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oetting A, Yen PM (2007) New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 21:193–208CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng SY (2000) Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1:9–18CrossRefPubMedGoogle Scholar
  7. 7.
    Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY (2008) Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor. Mol Cell Biol 28:4598–4608CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sirakov M, Skah S, Lone IN, Nadjar J, Angelov D et al (2012) Multi-level interactions between the nuclear receptor TRalpha1 and the WNT effectors beta-catenin/Tcf4 in the intestinal epithelium. PLoS One 7:e34162CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480CrossRefPubMedGoogle Scholar
  10. 10.
    Bianco AC, Larsen PR (2005) Cellular and structural biology of the deiodinases. Thyroid 15:777–786CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng SY (2005) Isoform-dependent actions of thyroid hormone nuclear receptors: lessons from knockin mutant mice. Steroids 70:450–454CrossRefPubMedGoogle Scholar
  12. 12.
    Chen SL, Chang YJ, Wu YH, Lin KH (2003) Mitogen-activated protein kinases potentiate thyroid hormone receptor transcriptional activity by stabilizing its protein. Endocrinology 144:1407–1419CrossRefPubMedGoogle Scholar
  13. 13.
    Lin HY, Hopkins R, Cao HJ, Tang HY, Alexander C et al (2005) Acetylation of nuclear hormone receptor superfamily members: thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism. Steroids 70:444–449CrossRefPubMedGoogle Scholar
  14. 14.
    Rastinejad F (2001) Retinoid X receptor and its partners in the nuclear receptor family. Curr Opin Struct Biol 11:33–38CrossRefPubMedGoogle Scholar
  15. 15.
    Szanto A, Narkar V, Shen Q, Uray IP, Davies PJ et al (2004) Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 11(Suppl 2):S126–S143CrossRefPubMedGoogle Scholar
  16. 16.
    Manteuffel-Cymborowska M (1999) Nuclear receptors, their coactivators and modulation of transcription. Acta Biochim Pol 46:77–89PubMedGoogle Scholar
  17. 17.
    McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344PubMedGoogle Scholar
  18. 18.
    Sadow PM, Chassande O, Koo EK, Gauthier K, Samarut J et al (2003) Regulation of expression of thyroid hormone receptor isoforms and coactivators in liver and heart by thyroid hormone. Mol Cell Endocrinol 203:65–75CrossRefPubMedGoogle Scholar
  19. 19.
    Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457CrossRefPubMedGoogle Scholar
  20. 20.
    Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357CrossRefGoogle Scholar
  21. 21.
    Puzianowska-Kuznicka M, Pietrzak M, Turowska O, Nauman A (2006) Thyroid hormones and their receptors in the regulation of cell proliferation. Acta Biochim Pol 53:641–650PubMedGoogle Scholar
  22. 22.
    Su Y, Damjanovski S, Shi Y, Shi YB (1999) Molecular and cellular basis of tissue remodeling during amphibian metamorphosis. Histol Histopathol 14:175–183PubMedGoogle Scholar
  23. 23.
    Pascual A, Aranda A (2013) Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 1830:3908–3916CrossRefPubMedGoogle Scholar
  24. 24.
    Mohan V, Sinha RA, Pathak A, Rastogi L, Kumar P et al (2012) Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp Neurol 237:477–488CrossRefPubMedGoogle Scholar
  25. 25.
    Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259CrossRefPubMedGoogle Scholar
  26. 26.
    Santisteban P, Bernal J (2005) Thyroid development and effect on the nervous system. Rev Endocr Metab Disord 6:217–228CrossRefPubMedGoogle Scholar
  27. 27.
    Sirakov M, Plateroti M (2011) The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta 1812:938–946CrossRefPubMedGoogle Scholar
  28. 28.
    Sun G, Roediger J, Shi YB (2016) Thyroid hormone regulation of adult intestinal stem cells: implications on intestinal development and homeostasis. Rev Endocr Metab Disord 17:559–569CrossRefPubMedGoogle Scholar
  29. 29.
    Sirakov M, Boussouar A, Kress E, Frau C, Lone IN et al (2015) The thyroid hormone nuclear receptor TRalpha1 controls the notch signaling pathway and cell fate in murine intestine. Development 142:2764–2774CrossRefPubMedGoogle Scholar
  30. 30.
    Skah S, Uchuya-Castillo J, Sirakov M, Plateroti M (2017) The thyroid hormone nuclear receptors and the Wnt/beta-catenin pathway: an intriguing liaison. Dev Biol 422:71–82CrossRefPubMedGoogle Scholar
  31. 31.
    O’Kane DJ, Woodward B, Lee J, Prasher DC (1991) Borrowed proteins in bacterial bioluminescence. Proc Natl Acad Sci U S A 88:1100–1104CrossRefGoogle Scholar
  32. 32.
    Wood KV, de Wet JR, Dewji N, DeLuca M (1984) Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns. Biochem Biophys Res Commun 124:592–596CrossRefPubMedGoogle Scholar
  33. 33.
    Matthews JC, Hori K, Cormier MJ (1977) Purification and properties of Renilla reniformis luciferase. Biochemistry 16:85–91CrossRefPubMedGoogle Scholar
  34. 34.
    Farr A, Roman A (1992) A pitfall of using a second plasmid to determine transfection efficiency. Nucleic Acids Res 20:920CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Samuels HH, Stanley F, Casanova J (1979) Depletion of L-3,5,3′-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology 105:80–85CrossRefPubMedGoogle Scholar
  36. 36.
    Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Plateroti M, Kress E, Mori JI, Samarut J (2006) Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol 26:3204–3214CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M (2009) The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine. J Biol Chem 284:1234–1241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF)Università degli Studi della Campania “Luigi Vanvitelli”CasertaItaly
  2. 2.Département de la Recherche, Centre Léon Bérard, Centre de Recherche en Cancerologie de Lyon (CRCL)INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1LyonFrance

Personalised recommendations