Advertisement

Characterization of Mouse γδ T Cell Subsets in the Setting of Type-2 Immunity

  • Wanjiang Zeng
  • Rebecca L. O’Brien
  • Willi K. Born
  • Yafei Huang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1799)

Abstract

Accumulating evidence indicates that γδ T cells are a critical component of type-2 immunity. However, the role of these cells in type-2 immune responses seems to be divergent. γδ T cells are heterogeneous lymphocytes that can be further divided into TCR-Vγ/δ definable subsets. Different subsets have distinct and sometimes opposite function during immune responses. In this chapter, we describe the detailed protocol for characterization of γδ T cell subsets in a mouse model of ovalbumin (OVA)/alum-induced type-2 immunity. Our protocol includes identifying γδ T cell subsets by flow cytometry, functionally inactivating individual subsets in vivo, purifying γδ T cell subsets, and using adoptive cell transfer to explore the role of individual subsets in OVA/alum-induced IgE responses.

Key words

Type-2 immunity γδ T cells TCR-Vγ/δ Subsets OVA/alum IgE Flow cytometry Adoptive cell transfer 

Notes

Acknowledgments

This work was supported by a NFSC grant 81670825 to Y.H., NIH grants R21AI095765 and R21AI122135 to W.K.B., and NIH grant R01 EY021199 to RLO.

References

  1. 1.
    Born WK, O’Brien RL (2016) Discovery of the gammadelta TCR: Act II. J Immunol 196(9):3507–3508. https://doi.org/10.4049/jimmunol.1600404CrossRefPubMedGoogle Scholar
  2. 2.
    Bank I, DePinho RA, Brenner MB, Cassimeris J, Alt FW, Chess L (1986) A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322(6075):179–181. https://doi.org/10.1038/322179a0CrossRefPubMedGoogle Scholar
  3. 3.
    Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, Seidman JG, Ip S, Rosen F, Krangel MS (1986) Identification of a putative second T-cell receptor. Nature 322(6075):145–149. https://doi.org/10.1038/322145a0CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang L, Jin N, Nakayama M, O’Brien RL, Eisenbarth GS, Born WK (2010) Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. J Autoimmun 34(4):478–484. https://doi.org/10.1016/j.jaut.2009.12.008CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zeng X, Wei YL, Huang J, Newell EW, Yu H, Kidd BA, Kuhns MS, Waters RW, Davis MM, Weaver CT, Chien YH (2012) gammadelta T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37(3):524–534. https://doi.org/10.1016/j.immuni.2012.06.011CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chien YH, Meyer C, Bonneville M (2014) Gammadelta T cells: first line of defense and beyond. Annu Rev Immunol 32:121–155. https://doi.org/10.1146/annurev-immunol-032713-120216CrossRefPubMedGoogle Scholar
  7. 7.
    Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI (2013) CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol 14(11):1137–1145. https://doi.org/10.1038/ni.2713CrossRefPubMedGoogle Scholar
  8. 8.
    Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345. https://doi.org/10.1038/nri797CrossRefPubMedGoogle Scholar
  9. 9.
    Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322(6082):836–840. https://doi.org/10.1038/322836a0CrossRefPubMedGoogle Scholar
  10. 10.
    Garman RD, Doherty PJ, Raulet DH (1986) Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45(5):733–742CrossRefGoogle Scholar
  11. 11.
    Born WK, Huang Y, Jin N, Huang H, O'Brien RL (2010) Balanced approach of gammadelta T cells to type 2 immunity. Immunol Cell Biol 88(3):269–274. https://doi.org/10.1038/icb.2009.105CrossRefPubMedGoogle Scholar
  12. 12.
    Pereira P, Gerber D, Huang SY, Tonegawa S (1995) Ontogenic development and tissue distribution of V gamma 1-expressing gamma/delta T lymphocytes in normal mice. J Exp Med 182(6):1921–1930CrossRefGoogle Scholar
  13. 13.
    Pereira P, Boucontet L (2004) Rates of recombination and chain pair biases greatly influence the primary gammadelta TCR repertoire in the thymus of adult mice. J Immunol 173(5):3261–3270CrossRefGoogle Scholar
  14. 14.
    Dent AL, Matis LA, Hooshmand F, Widacki SM, Bluestone JA, Hedrick SM (1990) Self-reactive gamma delta T cells are eliminated in the thymus. Nature 343(6260):714–719. https://doi.org/10.1038/343714a0CrossRefPubMedGoogle Scholar
  15. 15.
    Havran WL, Grell S, Duwe G, Kimura J, Wilson A, Kruisbeek AM, O'Brien RL, Born W, Tigelaar RE, Allison JP (1989) Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody. Proc Natl Acad Sci U S A 86(11):4185–4189CrossRefGoogle Scholar
  16. 16.
    Tigelaar RE, Lewis JM, Bergstresser PR (1990) TCR gamma/delta+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. J Invest Dermatol 94(6 Suppl):58S–63SCrossRefGoogle Scholar
  17. 17.
    Roark CL, Aydintug MK, Lewis J, Yin X, Lahn M, Hahn YS, Born WK, Tigelaar RE, O’Brien RL (2004) Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J Leukoc Biol 75(1):68–75. https://doi.org/10.1189/jlb.0703326CrossRefPubMedGoogle Scholar
  18. 18.
    Pereira P, Hermitte V, Lembezat MP, Boucontet L, Azuara V, Grigoriadou K (2000) Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. Eur J Immunol 30(7):1988–1997. https://doi.org/10.1002/1521-4141(200007)30:7<1988::AID-IMMU1988>3.0.CO;2-WCrossRefPubMedGoogle Scholar
  19. 19.
    Lefrancois L, LeCorre R, Mayo J, Bluestone JA, Goodman T (1990) Extrathymic selection of TCR gamma delta + T cells by class II major histocompatibility complex molecules. Cell 63(2):333–340CrossRefGoogle Scholar
  20. 20.
    Belles C, Kuhl AK, Donoghue AJ, Sano Y, O'Brien RL, Born W, Bottomly K, Carding SR (1996) Bias in the gamma delta T cell response to Listeria monocytogenes. V delta 6.3+ cells are a major component of the gamma delta T cell response to Listeria monocytogenes. J Immunol 156(11):4280–4289PubMedGoogle Scholar
  21. 21.
    Pircher H, Rebai N, Groettrup M, Gregoire C, Speiser DE, Happ MP, Palmer E, Zinkernagel RM, Hengartner H, Malissen B (1992) Preferential positive selection of V alpha 2+ CD8+ T cells in mouse strains expressing both H-2k and T cell receptor V alpha a haplotypes: determination with a V alpha 2-specific monoclonal antibody. Eur J Immunol 22(2):399–404. https://doi.org/10.1002/eji.1830220217CrossRefPubMedGoogle Scholar
  22. 22.
    Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 373(6511):255–257. https://doi.org/10.1038/373255a0CrossRefPubMedGoogle Scholar
  23. 23.
    Zuany-Amorim C, Ruffie C, Haile S, Vargaftig BB, Pereira P, Pretolani M (1998) Requirement for gammadelta T cells in allergic airway inflammation. Science 280(5367):1265–1267CrossRefGoogle Scholar
  24. 24.
    Svensson L, Lilliehook B, Larsson R, Bucht A (2003) Gammadelta T cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation. Immunology 108(1):98–108CrossRefGoogle Scholar
  25. 25.
    McMenamin C, Pimm C, McKersey M, Holt PG (1994) Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 265(5180):1869–1871CrossRefGoogle Scholar
  26. 26.
    Hahn YS, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, Lahn M, Huber SA, O’Brien RL, Gelfand EW, Born WK (2004) Different potentials of gamma delta T cell subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J Immunol 172(5):2894–2902CrossRefGoogle Scholar
  27. 27.
    Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O'Brien RL, Born WK (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol 183(2):849–855. https://doi.org/10.4049/jimmunol.0804104CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang Y, Aydintug MK, Loomis J, Macleod MK, McKee AS, Kirchenbaum G, Jakubzick CV, Kedl RM, Sun D, Jacobelli J, O'Brien RL, Born WK (2013) Antigen-specific regulation of IgE antibodies by non-antigen-specific gammadelta T cells. J Immunol 190(3):913–921. https://doi.org/10.4049/jimmunol.1202230CrossRefPubMedGoogle Scholar
  29. 29.
    Huang Y, Yang Z, McGowan J, Huang H, O'Brien RL, Born WK (2015) Regulation of IgE responses by gammadelta T cells. Curr Allergy Asthma Rep 15(4):13. https://doi.org/10.1007/s11882-015-0519-zCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wanjiang Zeng
    • 1
  • Rebecca L. O’Brien
    • 2
    • 3
  • Willi K. Born
    • 2
    • 3
  • Yafei Huang
    • 4
    • 5
  1. 1.Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Biomedical ResearchNational Jewish HealthDenverUSA
  3. 3.Department of Immunology and MicrobiologyUniversity of Colorado Health Sciences CenterAuroraUSA
  4. 4.Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  5. 5.Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations