TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings

  • Serene Bayram
  • Omar Zahr
  • Julia Del Re
  • Amy Szuchmacher Blum
Part of the Methods in Molecular Biology book series (MIMB, volume 1798)


Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity. The tobacco mosaic virus coat protein is used as a command surface to grow and assemble silver nanoparticles into sub-30 nm rings. The versatility of TMV allows the formation of both solid silver rings and rings consisting of discrete silver nanoparticles. The pH-dependent coulombic surface map along with the annular geometry of the protein aggregate allow the generation of rings with or without a central nanoparticle. Our silver rings are believed to be the smallest to date, and they can offer a test material for existing theories on metallic nanorings of this heretofore unreached size scale.

Key words

Silver Nanorings TMV Photoreduction Metamaterials Bionanomaterials 


  1. 1.
    Nordlander P (2009) The ring: a leitmotif in plasmonics. ACS Nano 3(3):488–492CrossRefPubMedGoogle Scholar
  2. 2.
    Ye J, Shioi M, Lodewijks K et al (2010) Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl Phys Lett 97(16):163106CrossRefGoogle Scholar
  3. 3.
    Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11(1):23–36CrossRefPubMedGoogle Scholar
  4. 4.
    Song M, Wang C, Zhao Z et al (2016) Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8(3):1635–1641CrossRefPubMedGoogle Scholar
  5. 5.
    Kuchmizhak A, Gurbatov S, Vitrik O et al (2016) Ion-beam assisted laser fabrication of sensing plasmonic nanostructures. Sci Rep 6:19410CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48CrossRefGoogle Scholar
  7. 7.
    Near R, Tabor C, Duan J et al (2012) Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett 12(4):2158–2164CrossRefPubMedGoogle Scholar
  8. 8.
    Vogel N, Fischer J, Mohammadi R et al (2011) Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. Nano Lett 11(2):446–454CrossRefPubMedGoogle Scholar
  9. 9.
    Cui B, Veres T (2007) Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching. Microelectron Eng 84(5):1544–1547CrossRefGoogle Scholar
  10. 10.
    Steinmetz NF, Lomonossoff GP, Evans D (2006) Decoration of cowpea mosaic virus with multiple, redox-active, organometallic complexes. Small 2(4):530–533CrossRefPubMedGoogle Scholar
  11. 11.
    Dedeo MT, Duderstadt KE, Berger JM et al (2009) Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett 10(1):181–186CrossRefGoogle Scholar
  12. 12.
    Paavola C, Chan S, Li Y, Mazzarella K, McMillan R, Trent J (2006) A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 17(5):1171CrossRefGoogle Scholar
  13. 13.
    Zahr OK, Blum AS (2012) Solution phase gold nanorings on a viral protein template. Nano Lett 12(2):629–633CrossRefPubMedGoogle Scholar
  14. 14.
    Blum AS, Soto CM, Wilson CD et al (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4(5):867–870CrossRefGoogle Scholar
  15. 15.
    Khan AA, Fox EK, Górzny MŁ et al (2013) pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir 29(7):2094–2098CrossRefPubMedGoogle Scholar
  16. 16.
    Dujardin E, Peet C, Stubbs G et al (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417CrossRefGoogle Scholar
  17. 17.
    Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B Biol Sci 354(1383):531–535CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kegel WK, Van der Schoot P (2006) Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 91(4):1501–1512CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lim JS, Kim SM, Lee SY et al (2010) Quantitative study of au (III) and Pd (II) ion biosorption on genetically engineered tobacco mosaic virus. J Colloid Interface Sci 342(2):455–461CrossRefPubMedGoogle Scholar
  20. 20.
    Górzny MŁ, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20(8):1295–1300CrossRefGoogle Scholar
  21. 21.
    Balci S, Bittner A, Hahn K et al (2006) Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim Acta 51(28):6251–6257CrossRefGoogle Scholar
  22. 22.
    Tsukamoto R, Muraoka M, Seki M et al (2007) Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate. Chem Mater 19(10):2389–2391CrossRefGoogle Scholar
  23. 23.
    Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109CrossRefPubMedGoogle Scholar
  24. 24.
    Bruckman MA, Kaur G, Lee LA et al (2008) Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem 9(4):519–523CrossRefPubMedGoogle Scholar
  25. 25.
    Bruckman MA, Hern S, Jiang K et al (2013) Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J Mater Chem B 1(10):1482–1490CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hu J, Wang P, Zhao X et al (2014) Charge-transfer interactions for the fabrication of multifunctional viral nanoparticles. Chem Commun 50(91):14125–14128CrossRefGoogle Scholar
  27. 27.
    Chen L, Zhao X, Lin Y et al (2013) A supramolecular strategy to assemble multifunctional viral nanoparticles. Chem Commun 49(83):9678–9680CrossRefGoogle Scholar
  28. 28.
    Holder PG, Finley DT, Stephanopoulos N et al (2010) Dramatic thermal stability of virus− polymer conjugates in hydrophobic solvents. Langmuir 26(22):17383–17388CrossRefPubMedGoogle Scholar
  29. 29.
    Bruckman MA, Liu J, Koley G et al (2010) Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. J Mater Chem 20(27):5715–5719CrossRefGoogle Scholar
  30. 30.
    Niu Z, Bruckman M, Kotakadi VS et al (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun (28):3019–3021Google Scholar
  31. 31.
    Bruckman MA, Soto CM, McDowell H et al (2011) Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS Nano 5(3):1606–1616CrossRefPubMedGoogle Scholar
  32. 32.
    Steinmetz NF, Findlay KC, Noel TR et al (2008) Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9(10):1662–1670CrossRefPubMedGoogle Scholar
  33. 33.
    Czapar AE, Zheng YR, Riddell IA et al (2016) Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano 10(4):4119CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Finbloom JA, Han K, Aanei IL et al (2016) Stable disk assemblies of a tobacco mosaic virus mutant as nanoscale scaffolds for applications in drug delivery. Bioconjug Chem 27(10):2480–2485CrossRefGoogle Scholar
  35. 35.
    Tian Y, Gao S, Wu M et al (2016) Tobacco mosaic virus-based 1D nanorod-drug carrier via the integrin-mediated endocytosis pathway. ACS Appl Mater Interfaces 8(17):10800–10807CrossRefPubMedGoogle Scholar
  36. 36.
    Shukla S (2016) Serum albumin ‘camouflage’of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 89:89–97CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bhanushali S, Ghosh P, Ganesh A et al (2015) 1D copper nanostructures: progress, challenges and opportunities. Small 11(11):1232–1252CrossRefPubMedGoogle Scholar
  38. 38.
    Royston E, Ghosh A, Kofinas P et al (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24(3):906–912CrossRefPubMedGoogle Scholar
  39. 39.
    Lee SY, Choi J, Royston E et al (2006) Deposition of platinum clusters on surface-modified tobacco mosaic virus. J Nanosci Nanotechnol 6(4):974–981CrossRefPubMedGoogle Scholar
  40. 40.
    Yang C, Meldon JH, Lee B et al (2014) Investigation on the catalytic reduction kinetics of hexavalent chromium by viral-templated palladium nanocatalysts. Catal Today 233:108–116CrossRefGoogle Scholar
  41. 41.
    Kim YH, Jung H, Yoon TS et al (2016) Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus Nanotemplate for organic memory device. ECS J Solid State Sci Technol 5(9):Q226–Q230CrossRefGoogle Scholar
  42. 42.
    Yang C, Manocchi AK, Lee B et al (2010) Viral templated palladium nanocatalysts for dichromate reduction. Appl Catal Environ 93(3):282–291Google Scholar
  43. 43.
    Chu S, Gerasopoulos K, Ghodssi R (2016) Tobacco mosaic virus-templated hierarchical Ni/NiO with high electrochemical charge storage performances. Electrochim Acta 220:184–192CrossRefGoogle Scholar
  44. 44.
    Chen X, Guo J, Gerasopoulos K et al (2012) 3D tin anodes prepared by electrodeposition on a virus scaffold. J Power Sources 211:129–132CrossRefGoogle Scholar
  45. 45.
    Chen X, Gerasopoulos K, Guo J et al (2011) A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater 21(2):380–387CrossRefGoogle Scholar
  46. 46.
    Atanasova P, Rothenstein D, Schneider JJ et al (2011) Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors. Adv Mater 23(42):4918–4922CrossRefPubMedGoogle Scholar
  47. 47.
    Fan X, Naves L, Siwak N et al (2015) Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26(20):205501CrossRefPubMedGoogle Scholar
  48. 48.
    Fraenkel-Conrat H (1957) Degradation of tobacco mosaic virus with acetic acid. Virology 4(1):1–4CrossRefPubMedGoogle Scholar
  49. 49.
    Lu B, Stubbs G, Culver JN (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225(1):11–20CrossRefPubMedGoogle Scholar
  50. 50.
    Bayram SS, Zahr OK, Del Re J et al (2016) Nanoring formation via in situ photoreduction of silver on a virus scaffold. Nanotechnology 27(48):485603CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Serene Bayram
    • 1
  • Omar Zahr
    • 1
  • Julia Del Re
    • 1
  • Amy Szuchmacher Blum
    • 1
  1. 1.Department of Chemistry and Center for Self-Assembled Chemical StructuresMcGill UniversityMontrealCanada

Personalised recommendations