Synthesis of Metal–Organic Frameworks on Tobacco Mosaic Virus Templates

  • Shaobo Li
  • Jeremiah J. GassensmithEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1798)


Tobacco mosaic virus (TMV) has long been exploited as a robust biological scaffold for organic/inorganic modification owing to its anisotropic structure and chemically addressable amino acid residues on both the exterior and interior. We present the fabrication of a crystalline microporous metal–organic framework (MOF) shell on the exterior of TMV, which retains its rod-like morphology, and produces uniformly formed core–shell structures with high accessible surface area and pore volume. We also describe an exfoliation method that can recover the intact viral particle from the core–shell composite.

Key words

Metal–organic frameworks MOFs Virus-like particles VLPs SURMOFs Self-assembly Biomimetic mineralization Templated crystal growth Tobacco mosaic virus Virus nanotechnology Chemical virology 



We are grateful to the generous assistance we received from Professor Gerald Stubbs and Professor Nicole F. Steinmetz when starting our group for providing N. benthamiana seeds and TMV stock solutions. We would have been unable to conduct this research without the assistance they provided when others declined.


  1. 1.
    Belowich ME, Valente C, Stoddart JF (2010) Template-directed syntheses of rigid oligorotaxanes under thermodynamic control. Angew Chem Int Ed 49:7208–7212CrossRefGoogle Scholar
  2. 2.
    Fan XZ, Pomerantseva E, Gnerlich M et al (2013) Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J Vac Sci Technol A 31:050815CrossRefGoogle Scholar
  3. 3.
    Schlick TL, Ding Z, Kovacs EW et al (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723CrossRefPubMedGoogle Scholar
  4. 4.
    Shenton W, Douglas T, Young M et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256CrossRefGoogle Scholar
  5. 5.
    Shukla S, Eber FJ, Nagarajan AS et al (2015) The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthc Mater 4:874–882CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bruckman MA, Randolph LN, Gulati NM et al (2015) Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. J Mater Chem B 3:7503–7510CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dujardin E, Peet C, Stubbs G et al (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417CrossRefGoogle Scholar
  8. 8.
    Knez M, Sumser M, Bittner AM et al (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124CrossRefGoogle Scholar
  9. 9.
    Pomerantseva E, Gerasopoulos K, Chen X et al (2012) Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries. J Power Sources 206:282–287CrossRefGoogle Scholar
  10. 10.
    Royston E, Ghosh A, Kofinas P et al (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912CrossRefPubMedGoogle Scholar
  11. 11.
    Yaghi OM, O'Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  12. 12.
    Liang K, Ricco R, Doherty CM et al (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chulkaivalsucharit P, Wu X, Ge J (2015) Synthesis of enzyme-embedded metal-organic framework nanocrystals in reverse micelles. RSC Adv 5:101293–101296CrossRefGoogle Scholar
  14. 14.
    Wu X, Ge J, Yang C et al (2015) Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem Commun 51:13408–13411CrossRefGoogle Scholar
  15. 15.
    Wu X, Yang C, Ge J et al (2015) Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale 7:18883–18886CrossRefPubMedGoogle Scholar
  16. 16.
    Liang K, Coghlan CJ, Bell SG et al (2016) Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem Commun 52:473–476CrossRefGoogle Scholar
  17. 17.
    Lyu F, Zhang Y, Zare RN et al (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14:5761–5765CrossRefPubMedGoogle Scholar
  18. 18.
    Shieh F-K, Wang S-C, Yen C-I et al (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137:4276–4279CrossRefPubMedGoogle Scholar
  19. 19.
    Liang K, Richardson JJ, Cui J et al (2016) Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater 28:7910–7914CrossRefPubMedGoogle Scholar
  20. 20.
    Li S, Dharmarwardana M, Welch RP et al (2016) Template-directed synthesis of porous and protective core–shell bionanoparticles. Angew Chem Int Ed 55:10691–10696CrossRefGoogle Scholar
  21. 21.
    Peng Y, Krungleviciute V, Eryazici I et al (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894CrossRefPubMedGoogle Scholar
  22. 22.
    Gándara F, Furukawa H, Lee S et al (2014) High methane storage capacity in aluminum metal–organic frameworks. J Am Chem Soc 136:5271–5274CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Karagiaridi O, Lalonde MB, Bury W et al (2012) Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134:18790–18796CrossRefPubMedGoogle Scholar
  24. 24.
    He C, Lu K, Liu D et al (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Park KS, Ni Z, Côté AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Texas at DallasRichardsonUSA

Personalised recommendations