Advertisement

Design and Characterization of Fibers and Bionanocomposites Using the Coiled-Coil Domain of Cartilage Oligomeric Matrix Protein

  • Priya Katyal
  • Jin Kim MontclareEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1798)

Abstract

Tremendous effort has been dedicated to the design and assembly of bioinspired protein-based architectures with potential applications in drug delivery, tissue engineering, biosensing, and bioimaging. Here, we describe our strategy to generate fibers and bionanocomposites using the coiled-coil domain of cartilage oligomeric matrix protein (COMPcc). Our construct, Q, engineered by swapping particular regions of COMPcc to optimize surface charge, self-assembles to form nanofibers. The Q protein nanofibers can efficiently bind curcumin to form robust mesofibers that can be potentially used for drug delivery and biomedical applications. In addition, using the same Q protein, we describe the biotemplation of gold nanoparticles (AuNP) in the presence and absence of the hexahistidine tag (His-tag). The Q bearing His-tag·AuNP (Q·AuNP) readily deposits on electrode surfaces, while Q without His-tag·AuNP (Qx·AuNP) stabilizes the soluble protein·gold bionanocomposites for several days without aggregating.

Key words

Self-assembly Fibers Gold nanoparticles Coiled-coil protein Cartilage oligomeric matrix protein Domain-swapped Bionanocomposites 

Notes

Acknowledgements

This work was supported by the National Science Foundation under award number NSF DMR-1728858.

References

  1. 1.
    Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365(6446):499–505CrossRefGoogle Scholar
  2. 2.
    Busseron E, Ruff Y, Moulin E et al (2013) Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5(16):7098–7140.  https://doi.org/10.1039/C3NR02176ACrossRefPubMedGoogle Scholar
  3. 3.
    Stephanopoulos N, Ortony JH, Stupp SI (2013) Self-assembly for the synthesis of functional biomaterials. Acta Mater 61(3):912–930.  https://doi.org/10.1016/j.actamat.2012.10.046CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: Some things old, new and borrowed. Curr Opin Chem Biol 10(6):559–567.  https://doi.org/10.1016/j.cbpa.2006.09.019CrossRefPubMedGoogle Scholar
  5. 5.
    Maham A, Tang Z, Wu H et al (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721.  https://doi.org/10.1002/smll.200801602CrossRefPubMedGoogle Scholar
  6. 6.
    Yu YB (2002) Coiled-coils: stability, specificity, and drug delivery potential. Adv Drug Deliv Rev 54(8):1113–1129CrossRefPubMedGoogle Scholar
  7. 7.
    Zuccola HJ, Rozzelle JE, Lemon SM et al (1998) Structural basis of the oligomerization of hepatitis delta antigen. Structure 6(7):821–830CrossRefPubMedGoogle Scholar
  8. 8.
    Gunasekar SK, Haghpanah JS, Montclare JK (2008) Assembly of bioinspired helical protein fibers. Polym Adv Technol 19(6):454–468.  https://doi.org/10.1002/pat.1136CrossRefGoogle Scholar
  9. 9.
    Bromley EH, Channon KJ, King PJ et al (2010) Assembly pathway of a designed alpha-helical protein fiber. Biophys J 98(8):1668–1676.  https://doi.org/10.1016/j.bpj.2009.12.4309CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pandya MJ, Spooner GM, Sunde M et al (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39(30):8728–8734CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smith AM, Acquah SF, Bone N et al (2004) Polar assembly in a designed protein fiber. Angew Chem Int Ed Engl 44(2):325–328.  https://doi.org/10.1002/anie.200461599CrossRefPubMedGoogle Scholar
  12. 12.
    Indelicato G, Wahome N, Ringler P et al (2016) Principles governing the self-assembly of coiled-coil protein nanoparticles. Biophys J 110(3):646–660.  https://doi.org/10.1016/j.bpj.2015.10.057CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pamies P (2013) Coiled-coil balls. Nat Mater 12(6):472–472.  https://doi.org/10.1038/nmat3680CrossRefGoogle Scholar
  14. 14.
    Fletcher JM, Harniman RL, Barnes FR et al (2013) Self-assembling cages from coiled-coil peptide modules. Science 340(6132):595–599.  https://doi.org/10.1126/science.1233936CrossRefPubMedGoogle Scholar
  15. 15.
    Gradišar H, Božič S, Doles T et al (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9(6):362–366.  https://doi.org/10.1038/nchembio.1248CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kojima S, Kuriki Y, Yoshida T et al (1997) Fibril formation by an amphipathic α-helix-forming polypeptide produced by gene engineering. Proc Jpn Acad Ser B 73(1):7–11.  https://doi.org/10.2183/pjab.73.7CrossRefGoogle Scholar
  17. 17.
    Papapostolou D, Bromley EH, Bano C et al (2008) Electrostatic control of thickness and stiffness in a designed protein fiber. J Am Chem Soc 130(15):5124–5130.  https://doi.org/10.1021/ja0778444CrossRefPubMedGoogle Scholar
  18. 18.
    Ryadnov MG, Bella A, Timson S et al (2009) Modular design of peptide fibrillar nano- to microstructures. J Am Chem Soc 131(37):13,240–13,241.  https://doi.org/10.1021/ja905539hCrossRefGoogle Scholar
  19. 19.
    Ogihara NL, Ghirlanda G, Bryson JW et al (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U S A 98(4):1404–1409.  https://doi.org/10.1073/pnas.98.4.1404CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779.  https://doi.org/10.1021/cr2001178CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346.  https://doi.org/10.1021/cr030698+CrossRefPubMedGoogle Scholar
  22. 22.
    Stevens MM, Flynn NT, Wang C et al (2004) Coiled-coil peptide-based assembly of gold nanoparticles. Adv Mater 16(11):915–918.  https://doi.org/10.1002/adma.200306430CrossRefGoogle Scholar
  23. 23.
    Bayraktar H, Srivastava S, You C-C et al (2008) Controlled nanoparticle assembly through protein conformational changes. Soft Matter 4(4):751–756.  https://doi.org/10.1039/B716386JCrossRefGoogle Scholar
  24. 24.
    Tullman JA, Finney WF, Lin Y-J et al (2007) Tunable assembly of peptide-coated gold nanoparticles. Plasmonics 2(3):119–127.  https://doi.org/10.1007/s11468-007-9033-zCrossRefGoogle Scholar
  25. 25.
    Aili D, Enander K, Rydberg J et al (2008) Folding induced assembly of polypeptide decorated gold nanoparticles. J Am Chem Soc 130(17):5780–5788.  https://doi.org/10.1021/ja711330fCrossRefPubMedGoogle Scholar
  26. 26.
    Gunasekar SK, Anjia L, Matsui H et al (2012) Effects of divalent metals on nanoscopic fiber formation and small molecule recognition of helical proteins. Adv Funct Mater 22(10):2154–2159.  https://doi.org/10.1002/adfm.201101627CrossRefGoogle Scholar
  27. 27.
    Malashkevich VN, Kammerer RA, Efimov VP et al (1996) The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science 274(5288):761–765CrossRefPubMedGoogle Scholar
  28. 28.
    Guo Y, Bozic D, Malashkevich VN et al (1998) All-trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five-stranded coiled-coil domain of cartilage oligomeric matrix protein. EMBO J 17(18):5265–5272.  https://doi.org/10.1093/emboj/17.18.5265CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gunasekar SK, Asnani M, Limbad C et al (2009) N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein. Biochemistry 48(36):8559–8567.  https://doi.org/10.1021/bi900534rCrossRefPubMedGoogle Scholar
  30. 30.
    McFarlane A, Orriss G, Okun N et al (2012) The pentameric channel of COMPcc in complex with different fatty acids. PLoS One 7(11):e48130.  https://doi.org/10.1371/journal.pone.0048130CrossRefPubMedGoogle Scholar
  31. 31.
    Wilken R, Veena MS, Wang MB et al (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12.  https://doi.org/10.1186/1476-4598-10-12CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zsila F, Bikadi Z, Simonyi M (2004) Induced circular dichroism spectra reveal binding of the antiinflammatory curcumin to human alpha1-acid glycoprotein. Bioorg Med Chem 12(12):3239–3245.  https://doi.org/10.1016/j.bmc.2004.03.074CrossRefPubMedGoogle Scholar
  33. 33.
    Rai D, Singh JK, Roy N et al (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155.  https://doi.org/10.1042/BJ20070891CrossRefPubMedGoogle Scholar
  34. 34.
    Panchatcharam M, Miriyala S, Gayathri VS et al (2006) Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 290(1–2):87–96.  https://doi.org/10.1007/s11010-006-9170-2CrossRefPubMedGoogle Scholar
  35. 35.
    Hume J, Sun J, Jacquet R et al (2014) Engineered coiled-coil protein microfibers. Biomacromolecules 15(10):3503–3510.  https://doi.org/10.1021/bm5004948CrossRefPubMedGoogle Scholar
  36. 36.
    Hume J, Chen R, Jacquet R et al (2015) Tunable conformation-dependent engineered protein·gold nanoparticle nanocomposites. Biomacromolecules 16(6):1706–1713.  https://doi.org/10.1021/acs.biomac.5b00098CrossRefPubMedGoogle Scholar
  37. 37.
    Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18.  https://doi.org/10.4143/crt.2014.46.1.2CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763.  https://doi.org/10.1517/17425241003777010CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Datta D, Wang P, Carrico IS et al (2002) A designed phenylalanyl-trna synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J Am Chem Soc 124(20):5652–5653.  https://doi.org/10.1021/ja0177096CrossRefPubMedGoogle Scholar
  40. 40.
    Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1(6):2527–2535.  https://doi.org/10.1038/nprot.2006.204CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringTandon School of Engineering, New York UniversityBrooklynUSA
  2. 2.Department of BiochemistrySUNY Downstate Medical CenterBrooklynUSA
  3. 3.Department of BiomaterialsNew York University College of DentistryNew YorkUSA
  4. 4.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations