Advertisement

Genipin Cross-Linking of Elastin and Elastin-Based Proteins

  • Lisa D. Muiznieks
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1798)

Abstract

Genipin is a natural plant-derived compound that covalently cross-links biopolymers into lattice networks with good biocompatibility, controllable swelling, and mechanical properties. This protocol describes the genipin cross-linking of elastic proteins, including tropoelastin and elastin-based polypeptides, through steps of elastin phase-separation upon addition of salt and heat, centrifugation to rapidly concentrate the dense protein phase, and incubation. This method is applicable for the fabrication of elastic materials suitable for use as scaffolds for biomedical applications.

Key words

Genipin Elastin Elastin-like polypeptide Cross-link Protein scaffold Hydrogel 

Notes

Acknowledgments

The author thanks Fred Keeley and Sean Reichheld for useful discussions.

References

  1. 1.
    Sung HW, Huang RN, Huang LL et al (1998) Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 42:560–567CrossRefPubMedGoogle Scholar
  2. 2.
    Levy RJ, Schoen FJ, Sherman FS et al (1986) Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am J Pathol 122:71–82PubMedPubMedCentralGoogle Scholar
  3. 3.
    Chang Y, Tsai CC, Liang HC et al (2002) In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 23:2447–2457CrossRefPubMedGoogle Scholar
  4. 4.
    Huang LL, Sung HW, Tsai CC et al (1998) Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 42:568–576CrossRefPubMedGoogle Scholar
  5. 5.
    Fessel G, Cadby J, Wunderli S et al (2014) Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics—toward clinical application for tendon repair. Acta Biomater 10:1897–1906CrossRefPubMedGoogle Scholar
  6. 6.
    Chang Y, Tsai CC, Liang HC et al (2001) Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiovasc Surg 122:1208–1218CrossRefPubMedGoogle Scholar
  7. 7.
    Muiznieks LD, Keeley FW (2016) Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers. Biopolymers 105:693–703CrossRefPubMedGoogle Scholar
  8. 8.
    Silva SS, Maniglio D, Motta A et al (2008) Genipin-modified silk-fibroin nanometric nets. Macromol Biosci 8:766–774CrossRefPubMedGoogle Scholar
  9. 9.
    Vieth S, Bellingham CM, Keeley FW et al (2007) Microstructural and tensile properties of elastin-based polypeptides crosslinked with genipin and pyrroloquinoline quinone. Biopolymers 85:199–206CrossRefPubMedGoogle Scholar
  10. 10.
    Mi F-L, Shyu S-S, Peng C-K (2004) Characterization of ring-opening polymerization of genipin and ph-dependent cross-linking reactions between chitosan and genipin. J Polym Sci A Polym Chem 43:1985–2000CrossRefGoogle Scholar
  11. 11.
    Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci A Polym Chem 41:3941–3953CrossRefGoogle Scholar
  12. 12.
    Mekhail M, Wong KK, Padavan DT et al (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22:2241–2259CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez AW, Caves JM, Ravi S et al (2014) Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater 10:26–33CrossRefPubMedGoogle Scholar
  14. 14.
    Arteche Pujana M, Perez-Alvarez L, Cesteros Iturbe LC et al (2013) Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym 94:836–842CrossRefPubMedGoogle Scholar
  15. 15.
    Harris R, Lecumberri E, Heras A (2010) Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin. Mar Drugs 8:1750–1762CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hrabchak C, Rouleau J, Moss I et al (2010) Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomater 6:2108–2115CrossRefPubMedGoogle Scholar
  17. 17.
    Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater 21:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lien SM, Ko LY, Huang TJ (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679CrossRefPubMedGoogle Scholar
  19. 19.
    Silva SS, Motta A, Rodrigues MT et al (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774CrossRefPubMedGoogle Scholar
  20. 20.
    Miao M, Sitarz E, Bellingham CM et al (2013) Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers. Biopolymers 99:392–407CrossRefPubMedGoogle Scholar
  21. 21.
    Muiznieks LD, Keeley FW (2017) Biomechanical design of elastic protein biomaterials: a balance of protein structure and conformational disorder. ACS Biomater Sci Eng 3:661–679CrossRefGoogle Scholar
  22. 22.
    Bellingham CM, Lillie MA, Gosline JM et al (2003) Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70:445–455CrossRefPubMedGoogle Scholar
  23. 23.
    Bellingham CM, Woodhouse KA, Robson P et al (2001) Self-aggregation characteristics of recombinantly expressed human elastin polypeptides. Biochim Biophys Acta 1550:6–19CrossRefPubMedGoogle Scholar
  24. 24.
    Vrhovski B, Jensen S, Weiss AS (1997) Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem 250:92–98CrossRefPubMedGoogle Scholar
  25. 25.
    Reichheld SE, Muiznieks LD, Stahl R et al (2014) Conformational transitions of the cross-linking domains of elastin during self-assembly. J Biol Chem 289:10057–10068CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reichheld SE, Muiznieks LD, Keeley FW et al (2017) Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc Natl Acad Sci U S A 114:E4408–E4415CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lisa D. Muiznieks
    • 1
  1. 1.Molecular Medicine ProgramResearch Institute, Hospital for Sick ChildrenTorontoCanada

Personalised recommendations