Skip to main content

Type III Secretion Filaments as Templates for Metallic Nanostructure Synthesis

  • 1409 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1798)

Abstract

Nanostructured materials can be interfaced with living cells to enable unique chemical and biological outcomes. However, it is challenging to precisely control the shape and chemical composition of submillimeter sized, cell-associated materials. In this protocol, we describe how to genetically modify and isolate a self-assembling filament protein from Salmonella enterica, PrgI, to bind Au nanoparticles. Au-conjugated filaments can be chemically reduced in vitro to form contiguous wires and networks that are several micrometers in length. We also describe a strategy to assemble PrgI-based filaments on live cells, which can then be sheared or remain tethered to cells for gold conjugation. These methods form the basis of a strategy for interactions between inorganic and organic systems, and could be expanded to introduce interactions with other metal nanoparticles for which peptide binding partners are known.

Key words

  • Nanowires
  • Biomineralization
  • Protein secretion
  • Self-assembly
  • Microbial electrocatalysis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7893-9_12
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7893-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nugroho FA, Iandolo B, Wagner JB et al (2016) Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 23:2871–2879. https://doi.org/10.1021/acsnano.5b08057

    CrossRef  CAS  Google Scholar 

  2. Kuroda Y, Kuroda K (2010) Morphosynthesis of nanostructured gold crystals by utilizing interstices in periodically arranged silica nanoparticles as a flexible reaction field. Angew Chem Int Ed 17:6993–6997. https://doi.org/10.1002/anie.201002430

    CrossRef  CAS  Google Scholar 

  3. Lee D, Yoon S (2015) Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering. J Phys Chem C 119:7873–7882. https://doi.org/10.1021/acs.jpcc.5b00314

    CrossRef  CAS  Google Scholar 

  4. Xu G-K, Li Y, Li B et al (2009) Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matt 5:3977–3983. https://doi.org/10.1039/B906918F

    CrossRef  CAS  Google Scholar 

  5. Yin P, Choi HM, Calvert CR et al (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322. https://doi.org/10.1038/nature06451

    CrossRef  PubMed  CAS  Google Scholar 

  6. Gradišar H, Jerala R (2014) Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J Nanobiotech 12:4. https://doi.org/10.1186/1477-3155-12-4

    CrossRef  CAS  Google Scholar 

  7. Chen CL, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942. https://doi.org/10.1002/anie.200903572

    CrossRef  CAS  Google Scholar 

  8. Lee SW, Mao C, Flynn CE et al (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895. https://doi.org/10.1126/science.1068054

    CrossRef  PubMed  CAS  Google Scholar 

  9. Shenton W, Douglas T, Young M et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7

    CrossRef  CAS  Google Scholar 

  10. Schoen AP, Schoen DT, Huggins KN et al (2011) Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J Am Chem Soc 133:18202–18207. https://doi.org/10.1021/ja204732n

    CrossRef  PubMed  CAS  Google Scholar 

  11. Scheibel T, Parthasarathy R, Sawicki G et al (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100:4527–4532. https://doi.org/10.1073/pnas.0431081100

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Acar H, Garifullin R, Guler MO (2011) Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures. Langmuir 27:1079–1084. https://doi.org/10.1021/la104518g

    CrossRef  PubMed  CAS  Google Scholar 

  13. Henry E, Dif A, Schmutz M, Legoff L et al (2011) Crystallization of fluorescent quantum dots within a three-dimensional bio-organic template of actin filaments and lipid membranes. Nano Lett 11:5443–5448. https://doi.org/10.1021/nl203216q

    CrossRef  PubMed  CAS  Google Scholar 

  14. Boal AK, Headley TJ, Tissot RG et al (2003) Microtubule-templated biomimetic mineralization of lepidocrocite. Adv Func Mater 14:19–24. https://doi.org/10.1002/adfm.200304435

    CrossRef  CAS  Google Scholar 

  15. Burkinshaw BJ, Strynadka NC (2014) Assembly and structure of the T3SS. Biochim Biophys Acta 1843:1649–1663. https://doi.org/10.1016/j.bbamcr.2014.01.035

    CrossRef  PubMed  CAS  Google Scholar 

  16. Rathinavelan T, Lara-Tejero M, Lefebre M et al (2014) NMR model of PrgI-SipD interaction and its implications in the needle-tip assembly of the Salmonella type III secretion system. J Mol Biol 426:2958–2969. https://doi.org/10.1016/j.jmb.2014.06.009

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Loquet A, Sgourakis NG, Gupta R et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279. https://doi.org/10.1038/nature11079

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  18. Azam A, Tullman-Ercek D (2016) Type-III secretion filaments as scaffolds for inorganic nanostructures. J R Soc Interface 13:20150938. https://doi.org/10.1098/rsif.2015.0938

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Azam A, Li C, Metcalf K et al (2015) Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins. Biotechnol Bioeng 113:2313–2320. https://doi.org/10.1002/bit.25656

    CrossRef  PubMed  CAS  Google Scholar 

  20. Glasgow AA, Wong HT, Tullman-Ercek D (2017) A secretion-amplification role for Salmonella enterica translocon protein SipD. ACS Synth Biol 6(6):1006–1015. https://doi.org/10.1021/acssynbio.6b00335

    CrossRef  PubMed  CAS  Google Scholar 

  21. Metcalf KJ, Finnerty C, Azam A et al (2014) Using transcriptional control to increase titer of secreted heterologous proteins by the type III secretion system. Appl Environ Microbiol 80:5927–5934. https://doi.org/10.1128/AEM.01330-14

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  22. Thomason L, Court DL, Bubunenko M et al (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 78:1.16.1–1.16.24. https://doi.org/10.1002/0471142727.mb0116s78

    CrossRef  Google Scholar 

  23. Kubori T, Sukhan A, Aizawa SI et al (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97:10225–10230. https://doi.org/10.1073/pnas.170128997

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  24. Poyraz O, Schmidt H, Seidel K et al (2010) Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 17:788–792. https://doi.org/10.1038/nsmb.1822

    CrossRef  PubMed  CAS  Google Scholar 

  25. Ikebe T, Iyoda S, Kutsukake K (1999) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183. https://doi.org/10.1266/ggs.74.179

    CrossRef  PubMed  CAS  Google Scholar 

  26. Wang Y, Ouellette AN, Egan CW et al (2007) Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. J Mol Biol 371:1304–1314. https://doi.org/10.1016/j.jmb.2007.06.034

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. https://doi.org/10.1021/la970982u

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Tullman-Ercek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Glasgow, A.A., Tullman-Ercek, D. (2018). Type III Secretion Filaments as Templates for Metallic Nanostructure Synthesis. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols