Advertisement

Biological Concerns on the Selection of Animal Models for Teratogenic Testing

  • Sofia Alves-Pimenta
  • Bruno Colaço
  • Paula A. Oliveira
  • Carlos VenâncioEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1797)

Abstract

During pregnancy fetus can be exposed to a variety of chemicals which may induce abortion and malformations. Due to the amounts of new substances coming into the market every year, a high demand for a rapid, reliable, and cost-effective method to detect potential toxicity is necessary. Different species have been used as animal models for teratogen screening, most of them sharing similar development processes with humans. However, the application of embryology knowledge to teratology is hampered by the complexity of the reproduction processes.

The present chapter outlines the essential development periods in different models, and highlights the similarities and differences between species, advantages and disadvantages of each group, and specific sensitivities for teratogenic tests. These models can be organized into the following categories: (1) invertebrate species such Caenorhabditis elegans and Drosophila melanogaster, which have become ideal for screening simple mechanisms in the early periods of reproductive cycle, allowing for rapid results and minor ethical concerns; (2) vertebrate nonmammalian species such Xenopus laevis and Danio rerio, important models to assess teratogenic potential in later development with fewer ethical requirements; and (3) the mammalian species Mus musculus, Rattus norvegicus, and Oryctolagus cuniculus, phylogenetically more close to humans, essential to assess complex specialized processes, that occur later in development.

Rules for development toxicology tests require the use of mammalian species. However, ethical concerns and costs limit their use in large-scale screening. By contrast, invertebrate and vertebrate nonmammalian species are increasing as alternative animal models, as these organisms combine less ethical requirements, low costs and culture conditions compatible with large-scale screening. In contrast to the in vitro techniques, their main advantage is to allow for high-throughput screening in a whole-animal context, not dependent on the prior identification of a target. In this chapter, the biological development of the animals most used in teratogenic tests is adressed with the aims of maximizing human translation, reducing the number of animals used, and the time to market for new drugs.

Key words

Developmental toxicity Teratology Embryology Reproductive cycle In vivo Animal models Development anatomy 

References

  1. 1.
    Schumann J (2010) Teratogen screening: state of the art. Avicenna J Med Biotechnol 2(3):115–121PubMedPubMedCentralGoogle Scholar
  2. 2.
    Drummond GB (2009) Reporting ethical matters in the Journal of Physiology: standards and advice. J Physiol 587(4):713–719. https://doi.org/10.1113/jphysiol.2008.167387 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    OECD (2001) OECD Test No. 414: Prenatal development toxicity study. OECD Publishing, ParisCrossRefGoogle Scholar
  4. 4.
    Barrow P (2016) Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol 64:57–63. https://doi.org/10.1016/j.reprotox.2016.03.048 CrossRefPubMedGoogle Scholar
  5. 5.
    Chapman KL, Holzgrefe H, Black LE et al (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66(1):88–103. https://doi.org/10.1016/j.yrtph.2013.03.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Graham ML, Prescott MJ (2015) The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur J Pharmacol 759(C):19–29. https://doi.org/10.1016/j.ejphar.2015.03.040 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Webster J (2014) Ethical and animal welfare considerations in relation to species selection for animal experimentation. Animals (Basel) 4(4):729–741. https://doi.org/10.3390/ani4040729 CrossRefGoogle Scholar
  8. 8.
    Wheeler GN, Brandli AW (2009) Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238(6):1287–1308. https://doi.org/10.1002/dvdy.21967 CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitt SM, Gull M, Brandli AW (2014) Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 69–70:225–246. https://doi.org/10.1016/j.addr.2014.02.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Huchon D, Madsen O, Sibbald MJ et al (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19(7):1053–1065CrossRefPubMedGoogle Scholar
  11. 11.
    Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3(11):838–849. https://doi.org/10.1038/nrg929 CrossRefPubMedGoogle Scholar
  12. 12.
    Giacomotto J, Segalat L (2010) High-throughput screening and small animal models, where are we? Br J Pharmacol 160(2):204–216. https://doi.org/10.1111/j.1476-5381.2010.00725.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moffat JG, Vincent F, Lee JA et al (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16(8):531–543. https://doi.org/10.1038/nrd.2017.111 CrossRefPubMedGoogle Scholar
  14. 14.
    Piersma AH, Genschow E, Verhoef A et al (2004) Validation of the postimplantation rat whole-embryo culture test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32(3):275–307PubMedGoogle Scholar
  15. 15.
    Le Douarin NM, Dieterlen-Lièvre F (2013) How studies on the avian embryo have opened new avenues in the understanding of development: a view about the neural and hematopoietic systems. Develop Growth Differ 55:1–14. https://doi.org/10.1111/dgd.12015 CrossRefGoogle Scholar
  16. 16.
    Busquet F, Strecker R, Rawlings JM et al (2014) OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul Toxicol Pharmacol 69(3):496–511. https://doi.org/10.1016/j.yrtph.2014.05.018 CrossRefPubMedGoogle Scholar
  17. 17.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5(5):387–398. https://doi.org/10.1038/nrd2031 CrossRefPubMedGoogle Scholar
  19. 19.
    Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407. https://doi.org/10.1534/genetics.115.176099 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460. https://doi.org/10.1016/j.cell.2005.02.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Leung MC, Williams PL, Benedetto A et al (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28. https://doi.org/10.1093/toxsci/kfn121 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Teuliere J, Garriga G (2017) Size matters: how C. elegans asymmetric divisions regulate apoptosis. Results Probl Cell Differ 61:141–163. https://doi.org/10.1007/978-3-319-53150-2_6 CrossRefPubMedGoogle Scholar
  23. 23.
    Nigon VM, Felix MA (2017) History of research on C. elegans and other free-living nematodes as model organisms. In: WormBook, pp 1–91. https://doi.org/10.1895/wormbook.1.181.1 CrossRefGoogle Scholar
  24. 24.
    Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37(1):50–59. https://doi.org/10.1002/jat.3357 CrossRefPubMedGoogle Scholar
  25. 25.
    Collins JJ, Huang C, Hughes S, Kornfeld K (2008) The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook:1–21. doi:https://doi.org/10.1895/wormbook.1.137.1
  26. 26.
    Calap-Quintana P, Gonzalez-Fernandez J, Sebastia-Ortega N et al (2017) Drosophila melanogaster models of metal-related human diseases and metal toxicity. Int J Mol Sci 18(7). https://doi.org/10.3390/ijms18071456 CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Whitworth AJ, Wes PD, Pallanck LJ (2006) Drosophila models pioneer a new approach to drug discovery for Parkinson’s disease. Drug Discov Today 11(3–4):119–126. https://doi.org/10.1016/s1359-6446(05)03693-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Sobels FH, Vogel E (1976) The capacity of Drosophila for detecting relevant genetic damage. Mutat Res 41(1 spel. no):95–106CrossRefPubMedGoogle Scholar
  29. 29.
    Tadros W, Lipshitz HD (2005) Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 232(3):593–608. https://doi.org/10.1002/dvdy.20297 CrossRefPubMedGoogle Scholar
  30. 30.
    Weigmann K, Klapper R, Strasser T et al (2003) FlyMove—a new way to look at development of Drosophila. Trends Genet 19(6):310–311. https://doi.org/10.1016/s0168-9525(03)00050-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Jennings BH (2011) Drosophila – a versatile model in biology & medicine. Mater Today 14(5):190–195. https://doi.org/10.1016/S1369-7021(11)70113-4 CrossRefGoogle Scholar
  32. 32.
    Gilbert SF (2003) The early development of vertebrates. In: Gilbert SF (ed) Developmental biology, 7th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  33. 33.
    Delvecchio C, Tiefenbach J, Krause HM (2011) The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 9(4):354–361. https://doi.org/10.1089/adt.2010.0346 CrossRefPubMedGoogle Scholar
  34. 34.
    Granato M, Nusslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6(4):461–468CrossRefPubMedGoogle Scholar
  35. 35.
    Braunbeck T, Kais B, Lammer E et al (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int 22(21):16247–16261. https://doi.org/10.1007/s11356-014-3814-7 CrossRefPubMedGoogle Scholar
  36. 36.
    Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. https://doi.org/10.1002/aja.1002030302 CrossRefPubMedGoogle Scholar
  37. 37.
    Kuster E, Altenburger R (2006) Comparison of cholin- and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl exposure. Biomarkers 11(4):341–354. https://doi.org/10.1080/13547500600742136 CrossRefPubMedGoogle Scholar
  38. 38.
    Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256CrossRefPubMedGoogle Scholar
  39. 39.
    Whitlock KE, Westerfield M (2000) The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development 127(17):3645–3653PubMedGoogle Scholar
  40. 40.
    Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA (2010) Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 89(1):66–77. https://doi.org/10.1002/bdrb.20223 CrossRefPubMedGoogle Scholar
  41. 41.
    Ahn D, Ho RK (2008) Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 322(1):220–233. https://doi.org/10.1016/j.ydbio.2008.06.032 CrossRefPubMedGoogle Scholar
  42. 42.
    Buckles GR, Thorpe CJ, Ramel MC, Lekven AC (2004) Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation. Mech Dev 121(5):437–447. https://doi.org/10.1016/j.mod.2004.03.026 CrossRefPubMedGoogle Scholar
  43. 43.
    Adams SL, Zhang T, Rawson DM (2005) The effect of external medium composition on membrane water permeability of zebrafish (Danio rerio) embryos. Theriogenology 64(7):1591–1602. https://doi.org/10.1016/j.theriogenology.2005.03.018 CrossRefPubMedGoogle Scholar
  44. 44.
    Panzica-Kelly JM, Zhang CX, Augustine-Rauch KA (2015) Optimization and performance assessment of the chorion-off [dechorinated] zebrafish developmental toxicity assay. Toxicol Sci 146(1):127–134. https://doi.org/10.1093/toxsci/kfv076 CrossRefPubMedGoogle Scholar
  45. 45.
    Kim KT, Tanguay RL (2014) The role of chorion on toxicity of silver nanoparticles in the embryonic zebrafish assay. Environ Health Toxicol 29:e2014021. https://doi.org/10.5620/eht.e2014021 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Segerdell E, Ponferrada VG, James-Zorn C et al (2013) Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase. J Biomed Semantics 4(1):31. https://doi.org/10.1186/2041-1480-4-31 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Keenan SR, Beck CW (2016) Xenopus limb bud morphogenesis. Dev Dyn 245(3):233–243. https://doi.org/10.1002/dvdy.24351 CrossRefPubMedGoogle Scholar
  48. 48.
    Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. Tropicalis genetics and genomics. Dev Dyn 225(4):422–433. https://doi.org/10.1002/dvdy.10178 CrossRefPubMedGoogle Scholar
  49. 49.
    OECD (2009) OECD Test No. 231: Amphibian metamorphosis assay. OECD Publishing, ParisCrossRefGoogle Scholar
  50. 50.
    Tomlinson ML, Rejzek M, Fidock M et al (2009) Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. Mol BioSyst 5(4):376–384. https://doi.org/10.1039/b818695b CrossRefPubMedGoogle Scholar
  51. 51.
    Leroy M, Allais L (2013) Teratology studies in the rat. Methods Mol Biol 947:95–109. https://doi.org/10.1007/978-1-62703-131-8_9 CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang CX, Danberry T, Jacobs MA, Augustine-Rauch K (2010) A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture. Birth Defects Res B Dev Reprod Toxicol 89(6):485–492. https://doi.org/10.1002/bdrb.20262 CrossRefPubMedGoogle Scholar
  53. 53.
    OECD (2011) OECD Test No. 443: Extended one-generation reproductive toxicity study. OECD Publishing, ParisCrossRefGoogle Scholar
  54. 54.
    Theunissen PT, Beken S, Beyer BK et al (2016) Comparison of rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on the nature and severity of developmental effects. Crit Rev Toxicol 46(10):900–910. https://doi.org/10.1080/10408444.2016.1224807 CrossRefPubMedGoogle Scholar
  55. 55.
    ICH (2000) Harmonised tripartite guideline. Detection of toxicity to reproduction for medicinal products & toxicity to male fertility S5(R2). Finalised GuidelineGoogle Scholar
  56. 56.
    OECD (2008) OECD Test No. 407: Repeated dose 28-day oral toxicity study in rodents. OECD Publishing, ParisCrossRefGoogle Scholar
  57. 57.
    Flisikowska T, Thorey IS, Offner S et al (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6(6):e21045. https://doi.org/10.1371/journal.pone.0021045 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Marshall VA, Carney EW (2012) Rabbit whole embryo culture. Methods Mol Biol 889:239–252. https://doi.org/10.1007/978-1-61779-867-2_14 CrossRefPubMedGoogle Scholar
  59. 59.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91(9):4082–4085CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Daniel-Carlier N, Harscoët E, Thépot D et al (2013) Gonad differentiation in the rabbit: evidence of species-specific features. PLoS One 8(4):e60451. https://doi.org/10.1371/journal.pone.0060451 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    WormAtlas (2002–2017). Accessed 2 Nov 2017Google Scholar
  62. 62.
    Wixon J, O’Kane C (2000) Featured organism: Drosophila melanogaster. Yeast 17(2):146–153. https://doi.org/10.1002/1097-0061(20000630)17:2<146::aid-yea24>3.0.co;2-a CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vejlsted M (2010) Embryo cleavage and blastulation. In: Sinowatz F, Vejlsted M, Hyttel P (eds) Essentials of domestic animal embryology. Saunders Elsevier, Oxford, pp 68–78Google Scholar
  64. 64.
    Vejlsted M (2010) Gastrulation, body folding and coelom formation. In: Sinowatz F, Vejlsted M, Hyttel P (eds) Essentials of domestic animal embryology. Saunders Elsevier, OxfordGoogle Scholar
  65. 65.
    Sinowatz F (2010) Neurulation. In: Sinowatz F, Vejlsted M, Hyttel P (eds) Essentials of domestic animal embryology. Saunders Elsevier, OxfordGoogle Scholar
  66. 66.
    Gilbert SF (2003) Fertilization: beginning a new organism. In: Gilbert SF (ed) Developmental biology, 7th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  67. 67.
    Stiernagle T (2006) Maintenance of C. elegans. WormBook:1–11. doi:https://doi.org/10.1895/wormbook.1.101.1
  68. 68.
    Hodgkin J, Barnes TM (1991) More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci 246(1315):19–24. https://doi.org/10.1098/rspb.1991.0119 CrossRefPubMedGoogle Scholar
  69. 69.
    Nagel R (2002) DarT: the embryo test with the Zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19(Suppl 1):38–48Google Scholar
  70. 70.
    Leung CF, Webb SE, Miller AL (1998) Calcium transients accompany ooplasmic segregation in zebrafish embryos. Develop Growth Differ 40(3):313–326CrossRefGoogle Scholar
  71. 71.
    Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156CrossRefPubMedGoogle Scholar
  72. 72.
    Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119CrossRefPubMedGoogle Scholar
  73. 73.
    Karr TL, Alberts BM (1986) Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol 102(4):1494–1509CrossRefPubMedGoogle Scholar
  74. 74.
    Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30(3):675–686CrossRefPubMedGoogle Scholar
  75. 75.
    Kimmel CB, Law RD (1985) Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev Biol 108(1):86–93CrossRefPubMedGoogle Scholar
  76. 76.
    Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119(2):447–456PubMedGoogle Scholar
  77. 77.
    Kalt MR (1971) The relationship between cleavage and blastocoel formation in Xenopus laevis. I. Light microscopic observations. J Embryol Exp Morphol 26(1):37–49PubMedGoogle Scholar
  78. 78.
    Beams HW, Kessel RG (1976) Cytokinesis: a comparative study of cytoplasmic division in animal cells. Am Sci 64(3):279–290PubMedGoogle Scholar
  79. 79.
    Edgar BA, Kiehle CP, Schubiger G (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44(2):365–372CrossRefPubMedGoogle Scholar
  80. 80.
    Schier AF, Neuhauss SC, Helde KA et al (1997) The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124(2):327–342PubMedGoogle Scholar
  81. 81.
    Schier AF, Talbot WS (1998) The zebrafish organizer. Curr Opin Genet Dev 8(4):464–471CrossRefPubMedGoogle Scholar
  82. 82.
    Schmitz B, Campos-Ortega JA (1994) Dorso-ventral polarity of the zebrafish embryo is distinguishable prior to the onset of gastrulation. Roux Arch Dev Biol 203(7–8):374–380. https://doi.org/10.1007/BF00188685 CrossRefPubMedGoogle Scholar
  83. 83.
    Skiba F, Schierenberg E (1992) Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Dev Biol 151(2):597–610CrossRefPubMedGoogle Scholar
  84. 84.
    Sweeton D, Parks S, Costa M, Wieschaus E (1991) Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112(3):775–789PubMedGoogle Scholar
  85. 85.
    Smith JC, Malacinski GM (1983) The origin of the mesoderm in an anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum. Dev Biol 98(1):250–254CrossRefPubMedGoogle Scholar
  86. 86.
    Minsuk SB, Keller RE (1996) Dorsal mesoderm has a dual origin and forms by a novel mechanism in Hymenochirus, a relative of Xenopus. Dev Biol 174(1):92–103. https://doi.org/10.1006/dbio.1996.0054 CrossRefPubMedGoogle Scholar
  87. 87.
    Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127(5):921–932PubMedGoogle Scholar
  88. 88.
    Gimlich RL, Gerhart JC (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104(1):117–130CrossRefPubMedGoogle Scholar
  89. 89.
    Nieuwkoop PD (1973) The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. Adv Morphog 10:1–39CrossRefPubMedGoogle Scholar
  90. 90.
    Khokha MK, Chung C, Bustamante EL et al (2002) Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 225(4):499–510. https://doi.org/10.1002/dvdy.10184 CrossRefPubMedGoogle Scholar
  91. 91.
    Thisse B, Wright CV, Thisse C (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403(6768):425–428. https://doi.org/10.1038/35000200 CrossRefPubMedGoogle Scholar
  92. 92.
    Zhang J, Houston DW, King ML et al (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94(4):515–524CrossRefPubMedGoogle Scholar
  93. 93.
    Sadler TW (2004) Tercera a octava semana: el período embrionario. In: Sadler TW (ed) Langman embriología médica con orientación clínica, 9th edn. Editorial medica Panamericana, Madison County, MTGoogle Scholar
  94. 94.
    Dong J, Feldmann G, Huang J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79. https://doi.org/10.1038/nrd4161 CrossRefPubMedGoogle Scholar
  96. 96.
    Smith JL, Schoenwolf GC (1997) Neurulation: coming to closure. Trends Neurosci 20(11):510–517CrossRefPubMedGoogle Scholar
  97. 97.
    Gilbert SF (2003) The central nervous system and the epidermis. In: Gilbert SF (ed) Developmental biology, 7th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  98. 98.
    Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48(1):21–31. https://doi.org/10.1002/tera.1420480106 CrossRefPubMedGoogle Scholar
  99. 99.
    Peeters MC, Viebahn C, Hekking JW, van Straaten HW (1998) Neurulation in the rabbit embryo. Anat Embryol (Berl) 197(3):167–175CrossRefGoogle Scholar
  100. 100.
    Sadler TW (2004) Sistema esquelético. In: Sadler TW (ed) Langman embriología médica con orientación clínica, 9th edn. Editorial medica Panamericana, Madison County, MTGoogle Scholar
  101. 101.
    Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91(5):639–648CrossRefPubMedGoogle Scholar
  102. 102.
    Cinquin O (2007) Understanding the somitogenesis clock: what’s missing? Mech Dev 124(7–8):501–517. https://doi.org/10.1016/j.mod.2007.06.004 CrossRefPubMedGoogle Scholar
  103. 103.
    Wang X, Chen D, Chen K et al (2017) Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol 421(2):108–117. https://doi.org/10.1016/j.ydbio.2016.12.010 CrossRefPubMedGoogle Scholar
  104. 104.
    Kanungo J, Cuevas E, Ali SF, Paule MG (2014) Zebrafish model in drug safety assessment. Curr Pharm Des 20(34):5416–5429CrossRefPubMedGoogle Scholar
  105. 105.
    Vliegenthart AD, Tucker CS, Del Pozo J, Dear JW (2014) Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol 78(6):1217–1227. https://doi.org/10.1111/bcp.12408 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87(1):1–28. https://doi.org/10.1152/physrev.00009.2006 CrossRefPubMedGoogle Scholar
  107. 107.
    Lee KY, Jeong JW, Tsai SY et al (2007) Mouse models of implantation. Trends Endocrinol Metab 18(6):234–239. https://doi.org/10.1016/j.tem.2007.06.002 CrossRefPubMedGoogle Scholar
  108. 108.
    Dey SK, Lim H, Das SK et al (2004) Molecular cues to implantation. Endocr Rev 25(3):341–373. https://doi.org/10.1210/er.2003-0020 CrossRefPubMedGoogle Scholar
  109. 109.
    Wise LD, Buschmann J, Feuston MH et al (2009) Embryo-fetal developmental toxicity study design for pharmaceuticals. Birth Defects Res B Dev Reprod Toxicol 86(6):418–428. https://doi.org/10.1002/bdrb.20214 CrossRefPubMedGoogle Scholar
  110. 110.
    Lee KY, DeMayo FJ (2004) Animal models of implantation. Reproduction 128(6):679–695. https://doi.org/10.1530/rep.1.00340 CrossRefPubMedGoogle Scholar
  111. 111.
    Enders AC, Schlafke S (1971) Penetration of the uterine epithelium during implantation in the rabbit. Am J Anat 132(2):219–230. https://doi.org/10.1002/aja.1001320208 CrossRefPubMedGoogle Scholar
  112. 112.
    Hoffman LH, Olson GE, Carson DD, Chilton BS (1998) Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium. Endocrinology 139(1):266–271. https://doi.org/10.1210/endo.139.1.5750 CrossRefPubMedGoogle Scholar
  113. 113.
    Furukawa S, Kuroda Y, Sugiyama A (2014) A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 27(1):11–18. https://doi.org/10.1293/tox.2013-0060 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Soares MJ, Chakraborty D, Karim Rumi MA et al (2012) Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface. Placenta 33(4):233–243. https://doi.org/10.1016/j.placenta.2011.11.026 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Pere MC (2003) Materno-foetal exchanges and utilisation of nutrients by the foetus: comparison between species. Reprod Nutr Dev 43(1):1–15CrossRefPubMedGoogle Scholar
  116. 116.
    Pacifici GM, Nottoli R (1995) Placental transfer of drugs administered to the mother. Clin Pharmacokinet 28(3):235–269. https://doi.org/10.2165/00003088-199528030-00005 CrossRefPubMedGoogle Scholar
  117. 117.
    Pentsuk N, van der Laan JW (2009) An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol 86(4):328–344. https://doi.org/10.1002/bdrb.20201 CrossRefPubMedGoogle Scholar
  118. 118.
    Carter AM (2007) Animal models of human placentation—a review. Placenta 28(Suppl A):S41–S47. https://doi.org/10.1016/j.placenta.2006.11.002 CrossRefPubMedGoogle Scholar
  119. 119.
    Rand MD, Montgomery SL, Prince L, Vorojeikina D (2014) Developmental toxicity assays using the Drosophila model. Curr Protoc Toxicol 59:1.12.11–1.12.20. https://doi.org/10.1002/0471140856.tx0112s59 CrossRefGoogle Scholar
  120. 120.
    Raizen DM, Zimmerman JE, Maycock MH et al (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451(7178):569–572. https://doi.org/10.1038/nature06535 CrossRefPubMedGoogle Scholar
  121. 121.
    Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18(1):46–53. https://doi.org/10.1016/j.semcdb.2006.11.010 CrossRefPubMedGoogle Scholar
  122. 122.
    Raciti D, Reggiani L, Geffers L et al (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9(5):R84. https://doi.org/10.1186/gb-2008-9-5-r84 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Du Pasquier L (2001) The immune system of invertebrates and vertebrates. Comp Biochem Physiol B Biochem Mol Biol 129(1):1–15CrossRefPubMedGoogle Scholar
  124. 124.
    Zikova A, Lorenz C, Hoffmann F et al (2017) Endocrine disruption by environmental gestagens in amphibians - a short review supported by new in vitro data using gonads of Xenopus laevis. Chemosphere 181:74–82. https://doi.org/10.1016/j.chemosphere.2017.04.021 CrossRefPubMedGoogle Scholar
  125. 125.
    Luzio A, Monteiro SM, Garcia-Santos S et al (2015) Zebrafish sex differentiation and gonad development after exposure to 17alpha-ethinylestradiol, fadrozole and their binary mixture: a stereological study. Aquat Toxicol 166:83–95. https://doi.org/10.1016/j.aquatox.2015.07.015 CrossRefPubMedGoogle Scholar
  126. 126.
    Chang CY, Witschi E (1956) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93(1):140–144CrossRefPubMedGoogle Scholar
  127. 127.
    Olmstead AW, Kosian PA, Korte JJ et al (2009) Sex reversal of the amphibian, Xenopus tropicalis, following larval exposure to an aromatase inhibitor. Aquat Toxicol 91(2):143–150. https://doi.org/10.1016/j.aquatox.2008.07.018 CrossRefPubMedGoogle Scholar
  128. 128.
    Bell AJ, McBride SM, Dockendorff TC (2009) Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly 3(1):39–49CrossRefPubMedGoogle Scholar
  129. 129.
    Segalat L (2007) Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem Biol 2(4):231–236. https://doi.org/10.1021/cb700009m CrossRefPubMedGoogle Scholar
  130. 130.
    OECD (2010) OECD Test No. 487: In vitro mammalian cell micronucleus test. OECD Publishing, ParisGoogle Scholar
  131. 131.
    Selderslaghs IW, Blust R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 33(2):142–154. https://doi.org/10.1016/j.reprotox.2011.08.003 CrossRefPubMedGoogle Scholar
  132. 132.
    Leconte I, Mouche I (2013) Frog embryo teratogenesis assay on Xenopus and predictivity compared with in vivo mammalian studies. Methods Mol Biol 947:403–421. https://doi.org/10.1007/978-1-62703-131-8_29 CrossRefPubMedGoogle Scholar
  133. 133.
    Yang L, Ho NY, Alshut R et al (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28(2):245–253. https://doi.org/10.1016/j.reprotox.2009.04.013 CrossRefPubMedGoogle Scholar
  134. 134.
    Bantle JA, Finch RA, Fort DJ et al (1999) Phase III interlaboratory study of FETAX. Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. J Appl Toxicol 19(6):447–472CrossRefPubMedGoogle Scholar
  135. 135.
    Vismara C, Caloni F (2007) Evaluation of aflatoxin B1 embryotoxicity using the frog embryo teratogenesis assay-Xenopus and bio-activation with microsome activation systems. Birth Defects Res B Dev Reprod Toxicol 80(3):183–187. https://doi.org/10.1002/bdrb.20113 CrossRefPubMedGoogle Scholar
  136. 136.
    Sastry BVR (1995) Placental toxicology. CRC Press, Nashville, TNGoogle Scholar
  137. 137.
    Fantel AG (1982) Culture of whole rodent embryos in teratogen screening. Teratog Carcinog Mutagen 2(3–4):231–242CrossRefPubMedGoogle Scholar
  138. 138.
    Kochhar DM (1980) In vitro testing of teratogenic agents using mammalian embryos. Teratog Carcinog Mutagen 1(1):63–74CrossRefPubMedGoogle Scholar
  139. 139.
    Hartung T (2009) Toxicology for the twenty-first century. Nature 460(7252):208–212. https://doi.org/10.1038/460208a CrossRefPubMedGoogle Scholar
  140. 140.
    Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sofia Alves-Pimenta
    • 1
    • 2
  • Bruno Colaço
    • 1
    • 2
  • Paula A. Oliveira
    • 2
    • 3
  • Carlos Venâncio
    • 1
    • 2
    Email author
  1. 1.Department of Animal ScienceUniversity of Trás-os-Montes and Alto Douro (UTAD)Vila RealPortugal
  2. 2.Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)University of Trás-os-Montes and Alto Douro (UTAD)Vila RealPortugal
  3. 3.Department of Veterinary SciencesUniversity of Trás-os-Montes and Alto Douro (UTAD)Vila RealPortugal

Personalised recommendations