Advertisement

An Overview of Teratology

  • Ana M. Calado
  • Maria dos Anjos PiresEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1797)

Abstract

In this chapter, we provide an overview of the basic principles of teratology, beginning with its definition, the critical point for teratogenesis to occur and the most evident etiological agents to improve the understanding of this science.

Teratology is a recent science that began in the early twentieth century, and has greatly improved over the recent years with the advancements in molecular biology, toxicology, animal laboratory science, and genetics, as well as the improvement on the knowledge of the environmental influences.

Nevertheless, more work is required to reduce the influence of hazardous products that could be deleterious during pregnancy, thus reducing teratogenic defects in the newborn. While some teratogenic defects are attributed to their agents with certainty, the same for a lot of other such defects is lacking, necessitating consistent studies to decipher the influence of various teratogenic agents on their corresponding teratogenic defects. It is here that the laboratory animal science is of great importance both in the present and in the future.

Key words

Teratology Basic principles Etiological agents Environmental agents Genetic factors Maternal conditions 

References

  1. 1.
    Sadler TW (2015) Birth defects and prenatal diagnosis, Chapter 9. In: Sadler TW (ed) Langman’s medical embryology, 13th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Ujházy E, Mach M, Navarová J et al (2012) Teratology – past, present and future. Interdiscip Toxicol 5(4):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gilbert-Barness E, Debich-Spicer D (2004) Embryo and foetal pathology. Color atlas with ultrasound correlation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Sadler TW (2015) Third to eighth weeks: the embryonic period, Chapter 9. In: Sadler TW (ed) Langman’s medical embryology, 13th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  5. 5.
    Feldkamp ML, Botto LD, Carey JC (2015) Reflections on the etiology of structural birth defects: established teratogens and risk factors. Birth Defects Res A Clin Mol Teratol 103:652–655CrossRefPubMedGoogle Scholar
  6. 6.
    McFadden DE, Friedman JM (1997) Chromosome abnormalities in human beings. Mutat Res 396:129–140CrossRefPubMedGoogle Scholar
  7. 7.
    Guerneri S, Bettio D, Simoni G et al (1987) Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod 8:735–739CrossRefGoogle Scholar
  8. 8.
    Murphy E (2015) Medical problems in obstetrics: inherited metabolic disease. Best Pract Res Clin Obstet Gynaecol 29:707–720. https://doi.org/10.1016/j.bpobgyn.2015.04.006 CrossRefPubMedGoogle Scholar
  9. 9.
    Murphy E (2015) Pregnancy in women with inherited metabolic disease. Obstet Med 8(2):61–67. https://doi.org/10.1177/1753495X15576442 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalaninehydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Waisbren SE, Azen C (2003) Cognitive and behavioural development in maternal phenylketonuria offspring. Pediatrics 112(6 Pt 2):1544–1547PubMedGoogle Scholar
  12. 12.
    Aguiar A, Ahring K, Almeida MF et al (2015) Practices in prescribing protein substitutes for PKU in Europe: no uniformity of approach. Mol Genet Metab 115(1):17–22. https://doi.org/10.1016/j.ymgme.2015.03.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Khoury MJ, Cordero JF, Greenberg F et al (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71:815–820PubMedGoogle Scholar
  14. 14.
    Castori M, Rinaldi R, Capocaccia P et al (2008) VACTERL association and maternal diabetes: a possible causal relationship? Birth Defects Res A Clin Mol Teratol 82(3):169–172. https://doi.org/10.1002/bdra.20432 CrossRefPubMedGoogle Scholar
  15. 15.
    Gilbert-Barness E (2010) Teratogenic causes of malformations. Ann Clin Lab Sci 40(2):99–114PubMedGoogle Scholar
  16. 16.
    Mills JL (2010) Malformations in infants of diabetic mothers. Birth Defects Res A Clin Mol Teratol 88(10):769–778. https://doi.org/10.1002/bdra.20757 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Simeone RM, Devine OJ, Marcinkevage JA et al (2015) Diabetes and congenital heart defects: a systematic review, meta-analysis, and modeling project. Am J Prev Med 48(2):195–204. https://doi.org/10.1016/j.amepre.2014.09.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Hoang TT, Marengo LK, Mitchell LE et al (2017) Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes. Am J Epidemiol 186(1):118–128. https://doi.org/10.1093/aje/kwx033 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Smallridge RC, Landenson PW (2001) Hypothyroidism in pregnancy: consequences to neonatal health. J Clin Endocrinol Metab 86(6):2349–2353CrossRefPubMedGoogle Scholar
  20. 20.
    Sahay RK, Nagesh VS (2012) Hypothyroidism in pregnancy. Indian J Endocrinol Metab 16(3):364–370. https://doi.org/10.4103/2230-8210.95667 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chaijan PY, Dorreh F, Sharafkhah M et al (2017) Congenital urogenital abnormalities in children with congenital hypothyroidism. Med J Islam Repub Iran 31:7. https://doi.org/10.18869/mjiri.31.7 CrossRefGoogle Scholar
  22. 22.
    MacKenzie-Feder J, Sirrs S, Anderson D et al (2011) Primary hyperparathyroidism: an overview. Int J Endocrinol 2011:251410. https://doi.org/10.1155/2011/251410 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Som M, Stroup JS (2011) Primary hyperparathyroidism and pregnancy. Proc (Bayl Univ Med Cent) 24(3):220–223CrossRefGoogle Scholar
  24. 24.
    Komarowska H, Bromińska B, Luftmann B, Ruchała M (2017) Primary hyperparathyroidism in pregnancy - a review of literature. Ginekol Pol 88(5):270–275. https://doi.org/10.5603/GP.a2017.0051 CrossRefPubMedGoogle Scholar
  25. 25.
    Kokrdova Z (2010) Pregnancy and primary hyperparathyroidism. J Obstet Gynaecol 30(1):57–59. https://doi.org/10.3109/01443610903315611 CrossRefPubMedGoogle Scholar
  26. 26.
    Gokkaya N, Gungor A, Bilen A et al (2016) Primary hyperparathyroidism in pregnancy: a case series and literature review. Gynecol Endocrinol 32(10):783–786. https://doi.org/10.1080/09513590.2016.1188916 CrossRefPubMedGoogle Scholar
  27. 27.
    Schnatz PF, Curry SL (2002) Primary hyperparathyroidism in pregnancy: evidence-based management. Obstet Gynecol Surv 57(6):365–376. https://doi.org/10.1097/01.OGX.0000017377.65823.CA CrossRefPubMedGoogle Scholar
  28. 28.
    Ullah MI, Uwaifo GI, Koch CA (2017) Primary hyperparathyroidism and hypercalcemia during pregnancy. Horm Metab Res 49(8):638–641. https://doi.org/10.1055/s-0043-112348 CrossRefPubMedGoogle Scholar
  29. 29.
    Sutandar M, Garcia-Bournissen F, Koren G (2007) Hypothyroidism in pregnancy. J Obstet Gynaecol Can 29(4):354–356. https://doi.org/10.4103/2230-8210.95667 CrossRefPubMedGoogle Scholar
  30. 30.
    Inoue M, Arata N, Koren G, Ito S (2009) Hyperthyroidism during pregnancy. Can Fam Physician 55:701–703PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang Y, Sun XL, Wang CL, Zhang HY (2017) Influence of screening and intervention of hyperthyroidism on pregnancy outcome. Eur Rev Med Pharmacol Sci 21(8):1932–1937PubMedGoogle Scholar
  32. 32.
    Springer D, Jiskra J, Limanova Z et al (2017) Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci 54(2):102–116. https://doi.org/10.1080/10408363.2016.1269309 CrossRefPubMedGoogle Scholar
  33. 33.
    Callies K, Arit W, Scholz HJ et al (1998) Management of hypoparathyroidism during pregnancy - report of twelve cases. Eur J Endocrinol 139:284–289CrossRefPubMedGoogle Scholar
  34. 34.
    Hatswell BL, Allan CA, Teng J et al (2015) Management of hypoparathyroidism in pregnancy and lactation - a report of 10 cases. Bone Rep 30(3):15–19. https://doi.org/10.1016/j.bonr.2015.05.005 CrossRefGoogle Scholar
  35. 35.
    Vogel F (1992) Risk calculations for hereditary effects of ionizing radiation in humans. Hum Genet 89:127146. https://doi.org/10.1007/BF00217113 CrossRefGoogle Scholar
  36. 36.
    Wertelecki W (2010) Malformations in a chornobyl-impacted region. Pediatrics 125:836–843. https://doi.org/10.1542/peds.2009-2219 CrossRefGoogle Scholar
  37. 37.
    Scherb H, Voigt K, Kusmierz R (2015) Ionizing radiation and the human gender proportion at birth - a concise review of the literature and complementary analyses of historical and recent data. Early Hum Dev 91:841–850. https://doi.org/10.1016/j.earlhumdev.2015.10.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Feshchenko SP, Schroder HC, Muller WEG, Lazjuk GI (2002) Congenital malformations among new-borns and developmental abnormalities among human embryos in Belarus after Chernobyl accident. Cell Mol Biol 48(4):423–426PubMedGoogle Scholar
  39. 39.
    Edwards MJ, Saunders RD, Shiota K (2003) Effects of heat on embryos and foetuses. Int J Hyperth 19:295–324. https://doi.org/10.1080/0265673021000039628 CrossRefGoogle Scholar
  40. 40.
    Edwards MJ (2006) Review: Hyperthermia and fever during pregnancy. Birth Defects Res A Clin Mol Teratol 76:507–516. https://doi.org/10.1002/bdra.20277 CrossRefPubMedGoogle Scholar
  41. 41.
    Graham JM Jr, Edwards MJ, Edwards M (1998) Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology 58:209–221. https://doi.org/10.1002/(SICI)1096-9926(199811)58:5<209::AID-TERA8>3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  42. 42.
    Moretti ME, Bar-Oz B, Fried S, Koren G (2005) Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 16:216–219CrossRefPubMedGoogle Scholar
  43. 43.
    Padmanabhan R (2006) Etiology, pathogenesis and prevention of neural tube defects. Congenit Anom 46(2):55–67CrossRefGoogle Scholar
  44. 44.
    Rolfe RA, Bezer JH, Kim T et al (2017) Abnormal foetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J Orthop Res 35(10):2135–2144. https://doi.org/10.1002/jor.23518 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rezai S, Faye J, Chadee A, Gottimukkala S et al (2016) Amniotic band syndrome, perinatal hospice, and palliative care versus active management. Case Rep Obstet Gynecol 2016:9756987. https://doi.org/10.1155/2016/9756987 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Salinas-Torres VM, De La O-Espinoza EA, Salinas-Torres RA (2017) Severe intrauterine amputations in one dichorionic twin with Pentalogy of Cantrell: further evidence and consideration for mechanical teratogenesis. Pediatr Dev Pathol 20(5):440–443. https://doi.org/10.1177/1093526617689896 CrossRefPubMedGoogle Scholar
  47. 47.
    Satake H, Ogino T, Iba K et al (2012) Metacarpal hypoplasia associated with congenital constriction band syndrome. J Hand Surg Am 37(4):760–763. https://doi.org/10.1016/j.jhsa.2012.01.014 CrossRefPubMedGoogle Scholar
  48. 48.
    Agarwal A, Shaharyar A, Kumar A (2015) Clubfoot associated with congenital constriction band: the Ponseti method perspective. Foot Ankle Spec 8(3):230–233. https://doi.org/10.1177/1938640014565049 CrossRefPubMedGoogle Scholar
  49. 49.
    Koskimies E, Syvanen J, Nietosvaara Y et al (2015) Congenital constriction band syndrome with limb defects. J Pediatr Orthop 35(1):100–103. https://doi.org/10.1097/BPO.0000000000000206 CrossRefPubMedGoogle Scholar
  50. 50.
    Kuperman AA, Koren O (2016) Antibiotic use during pregnancy: how bad is it? BMC Med 14(1):91. https://doi.org/10.1186/s12916-016-0636-0 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Polifka JE, Friedman JM (1999) Clinical teratology: identifying teratogenic risks in humans. Clin Genet 56:409–420CrossRefPubMedGoogle Scholar
  52. 52.
    Običan S, Scialli AR (2011) Teratogenic exposures. Am J Med Genet C Semin Med Genet 157C(3):150–169. https://doi.org/10.1002/ajmg.c.30310 CrossRefPubMedGoogle Scholar
  53. 53.
    Bromleya R (2016) The treatment of epilepsy in pregnancy: the neurodevelopmental risks associated with exposure to antiepileptic drugs. Reprod Toxicol 64:203–210. https://doi.org/10.1016/j.reprotox.2016.06.007 CrossRefGoogle Scholar
  54. 54.
    Veroniki AA, Cogo E, Rios P et al (2017) Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med 15(1):95. https://doi.org/10.1186/s12916-017-0845-1 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lopez-Rangel E, Van Allen MI (2005) Prenatal exposure to fluconazole: an identifiable dysmorphic phenotype. Birth Defects Res A Clin Mol Teratol 73:919–923CrossRefPubMedGoogle Scholar
  56. 56.
    Cassina M, Cagnoli GA, Zuccarello D et al (2017) Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 60(1):22–31. https://doi.org/10.1016/j.ejmg.2016.09.011 CrossRefPubMedGoogle Scholar
  57. 57.
    Giavini E, Menegola E (2012) Biomarkers of teratogenesis: suggestions from animal studies. Reprod Toxicol 34:180–185. https://doi.org/10.1016/j.reprotox.2012.05.003 CrossRefPubMedGoogle Scholar
  58. 58.
    Tiboni GM, Giampietro F (2005) Murine teratology of fluconazole: evaluation of developmental phase specificity and dose dependence. Pediatr Res 58:94–99. https://doi.org/10.1203/01.PDR.0000166754.24957.73 CrossRefPubMedGoogle Scholar
  59. 59.
    Ornoy A, Arnon J (1993) Clinical teratology. West J Med 159(3):382–390PubMedPubMedCentralGoogle Scholar
  60. 60.
    Nahum GG, Kennedy DL (2006) Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks. Obstet Gynecol 107(5):1120–1138. https://doi.org/10.1097/01.AOG.0000216197.26783.b5 CrossRefPubMedGoogle Scholar
  61. 61.
    Muanda FT, Sheehy O, Bérard A (2017) Use of antibiotics during pregnancy and risk of spontaneous abortion. CMAJ 189(17):E625–E633. https://doi.org/10.1503/cmaj.161020 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Van Runnard Heimel PJ, Schobben AF, Huisjes AJ et al (2005) The transplacental passage of prednisolone in pregnancies complicated by early-onset HELLP syndrome. Placenta 26:842–845. https://doi.org/10.1016/j.placenta.2004.12.008 CrossRefPubMedGoogle Scholar
  63. 63.
    de Vetten L, van Stuijvenberg M, Kema IP, Bocca G (2017) Maternal use of prednisolone is unlikely to be associated with neonatal adrenal suppression-a single-center study of 16 cases. Eur J Pediatr 176(8):1131–1136. https://doi.org/10.1007/s00431-017-2949-1 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fawcett LB, Buck SJ, Beckman DA, Brent RL (1996) Is there a no-effect dose for corticosteroid-induced cleft palate? The contribution of endogenous corticosterone to the incidence of cleft palate in mice. Pediatr Res 39(5):856–861CrossRefPubMedGoogle Scholar
  65. 65.
    Bandoli G, Palmsten K, Forbess Smith CJ, Chambers CD (2017) A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheum Dis Clin N Am 43(3):489–502. https://doi.org/10.1016/j.rdc.2017.04.013 CrossRefGoogle Scholar
  66. 66.
    Wallensteen L, Zimmermann M, Thomsen Sandberg M et al (2016) Sex-dimorphic effects of prenatal treatment with dexamethasone. J Clin Endocrinol Metab 101(10):3838–3846. https://doi.org/10.1210/jc.2016-1543 CrossRefPubMedGoogle Scholar
  67. 67.
    Treffers PE, Hanselaar AG, Helmerhorst TJ et al (2001) Consequences of diethylstilboestrol during pregnancy; 50 years later still a significant problem. Ned Tijdschr Geneeskd 145(14):675–680PubMedGoogle Scholar
  68. 68.
    Kalter H (2003) Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol Teratol 25:131–282CrossRefPubMedGoogle Scholar
  69. 69.
    Saili KS, Tilton SC, Waters KM, Tanguay RL (2013) Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reprod Toxicol 38:89–101. https://doi.org/10.1016/j.reprotox.2013.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Morthorst JE, Korsgaard B, Bjerregaard P (2016) Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis. Mar Environ Res 113:80–87. https://doi.org/10.1016/j.marenvres.2015.11.007 CrossRefPubMedGoogle Scholar
  71. 71.
    Shaw GM, Lammer EJ, Velie EM (1995) Ovulation induction by clomiphene and neural tube defects. Reprod Toxicol 9(4):399–400CrossRefPubMedGoogle Scholar
  72. 72.
    Dolovich LR, Addis A, Vaillancourt JMR et al (1998) Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ 317:839–843CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Takzare N, Hosseini M-J, Takzare A et al (2007) Teratogenic effects of Diazepam intake during pregnancy leading to cleft lip and palatal anomalies. J Med Sci 7(7):1177–1181. https://doi.org/10.1080/15376510801897739 CrossRefGoogle Scholar
  74. 74.
    Lakehayli S, Said N, El Khachibi M et al (2016) Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience 330:50–56. https://doi.org/10.1016/j.neuroscience.2016.05.035 CrossRefPubMedGoogle Scholar
  75. 75.
    Gidai J, Acs N, Bánhidy F, Czeizel AE (2008) An evaluation of data for 10 children born to mothers who attempted suicide by taking large doses of alprazolam during pregnancy. Toxicol Ind Health 24(1–2):53–60. https://doi.org/10.1177/0748233708089017 CrossRefPubMedGoogle Scholar
  76. 76.
    Timmermann G, Czeizel AE, Bánhidy F, Acs N (2008) A study of the teratogenic and fetotoxic effects of large doses of barbital, hexobarbital and butobarbital used for suicide attempts by pregnant women. Toxicol Ind Health 24(1–2):109–119. https://doi.org/10.1177/0748233708089004 CrossRefPubMedGoogle Scholar
  77. 77.
    Maier H, Honigsmann H (1996) Concentration of etretinate in plasma and subcutaneous fat after long-term acitretin. Lancet 348(9034):1107. https://doi.org/10.1016/S0140-6736(05)64457-1 CrossRefPubMedGoogle Scholar
  78. 78.
    Geiger JM, Walker M (2002) Is there a reproductive safety risk in male patients treated with acitretin (Neotigason®/Soriatane®)? Dermatology 205:105–107. https://doi.org/10.1159/000063893 CrossRefPubMedGoogle Scholar
  79. 79.
    Mazzu-Nascimento T, Melo DG, Morbioli GG et al (2017) Teratogens: a public health issue - a Brazilian overview. Genet Mol Biol 40(2):387–397. https://doi.org/10.1590/1678-4685-GMB-2016-0179 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioural research. Environ Health Perspect 106(Suppl 3):841–847CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hong YS, Kim YM, Lee KE (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353–363. https://doi.org/10.3961/jpmph.2012.45.6.353 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Scoville SA, Lane OP (2013) Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus. Bull Environ Contam Toxicol 90(5):616–620. https://doi.org/10.1007/s00128-013-0974-y CrossRefPubMedGoogle Scholar
  83. 83.
    Duan J, Hu H, Li Q et al (2016) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 44:120–127. https://doi.org/10.1016/j.etap.2016.05.004 CrossRefPubMedGoogle Scholar
  84. 84.
    Alves AC, Monteiro MS, Machado AL et al (2017) Mercury levels in parturient and new-borns from Aveiro region, Portugal. J Toxicol Environ Health A 19:1–13. https://doi.org/10.1080/15287394.2017.1286926 CrossRefGoogle Scholar
  85. 85.
    Kirk LE, Jørgensen JS, Nielsen F, Grandjean P (2017) Public health benefits of hair-mercury analysis and dietary advice in lowering methylmercury exposure in pregnant women. Scand J Public Health 45(4):444–451. https://doi.org/10.1177/1403494816689310 CrossRefPubMedGoogle Scholar
  86. 86.
    Tatsuta N, Murata K, Iwai-Shimada M et al (2017) Psychomotor ability in children prenatally exposed to methylmercury: the 18-month follow-up of Tohoku study of child development. Tohoku J Exp Med 242(1):1–8. https://doi.org/10.1620/tjem.242.1 CrossRefPubMedGoogle Scholar
  87. 87.
    Bellinger DC (2005) Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol 73:409–420. https://doi.org/10.1002/bdra.20127 CrossRefPubMedGoogle Scholar
  88. 88.
    Moore JA (1995) An assessment of lithium using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reprod Toxicol 9(2):175–210CrossRefPubMedGoogle Scholar
  89. 89.
    Qureshi WM, Latif ML, Parker TL, Pratten MK (2014) Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 46:106–114. https://doi.org/10.1016/j.reprotox.2014.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Di Florio A, Munk-Olsen T, Bergink V (2017) Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med 377(9):893. https://doi.org/10.1056/NEJMc1708919 CrossRefPubMedGoogle Scholar
  91. 91.
    Dodo T, Uchida K, Hirose T et al (2010) Increases in discontinuous rib cartilage and fused carpal bone in rat foetuses exposed to the teratogens, busulfan, acetazolamide, vitamin A, and ketoconazole. Hum Exp Toxicol 29(6):439–450CrossRefPubMedGoogle Scholar
  92. 92.
    Al-Saleem AI, Al-Jobair AM (2016) Possible association between acetazolamide administration during pregnancy and multiple congenital malformations. Drug Des Devel Ther 10:1471–1476. https://doi.org/10.2147/DDDT.S99561 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gonzalez CH, Marques-Dias MJ, Kim CA et al (1998) Congenital abnormalities in Brazilian children associated with misoprostol misuse in first trimester of pregnancy. Lancet 351:1624–1627. https://doi.org/10.1016/S0140-6736(97)12363-7 CrossRefPubMedGoogle Scholar
  94. 94.
    da Silva Dal Pizzol T, Knop FP, Mengue SS (2006) Prenatal exposure to misoprostol and congenital anomalies: systematic review and meta-analysis. Reprod Toxicol 22:666–671. https://doi.org/10.1016/j.reprotox.2006.03.015 CrossRefPubMedGoogle Scholar
  95. 95.
    Allen R, O’Brien BM (2009) Uses of misoprostol in obstetrics and gynecology. Rev Obstet Gynecol 2:159–168. https://doi.org/10.3909/riog0055 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dellicour S, Sevene E, McGready R et al (2017) First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med 14(5):e1002290. https://doi.org/10.1371/journal.pmed.1002290 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Burger RJ, van Eijk AM, Bussink M et al (2015) Artemisinin-based combination therapy versus quinine or other combinations for treatment of uncomplicated Plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Open Forum Infect Dis 3(1):ofv170. https://doi.org/10.1093/ofid/ofv170 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Hall JG, Pauli RM, Wilson KM (1980) Maternal and foetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140CrossRefPubMedGoogle Scholar
  99. 99.
    Barbour LA (1997) Current concepts of anticoagulant therapy in pregnancy. Obstet Gynecol Clin North Am 24(3):499–521CrossRefPubMedGoogle Scholar
  100. 100.
    Menger H, Lin AE, Toriello HV et al (1997) Vitamin K deficiency embryopathy: a phenocopy of the warfarin embryopathy due to a disorder of embryonic vitamin K metabolism. Am J Med Genet 72(2):129–134CrossRefPubMedGoogle Scholar
  101. 101.
    Chao W-Y, Hsu C-C, Guo YL (1997) Middle-ear disease in children exposed prenatally to polychlorinated biphenyls and polychlorinated dibenzofurans. Arch Environ Health 52(4):257–262. https://doi.org/10.1080/00039899709602195 CrossRefPubMedGoogle Scholar
  102. 102.
    Bjerregaard-Olesen C, Long M, Ghisari M et al (2017) Temporal trends of lipophilic persistent organic pollutants in serum from Danish nulliparous pregnant women 2011–2013. Environ Sci Pollut Res Int 24(20):16592–16603. https://doi.org/10.1007/s11356-017-8992-7 CrossRefPubMedGoogle Scholar
  103. 103.
    Man YB, Chow KL, Xing GH et al (2017) A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world’s major site for recycling transformers. Environ Pollut 227:364–371. https://doi.org/10.1016/j.envpol.2017.04.069 CrossRefPubMedGoogle Scholar
  104. 104.
    van der Pol JG, Wolf H, Boer K et al (1992) Jejunal atresia related to the use of methylene blue in genetic amniocentesis in twins. Br J Obstet Gynaecol 99:141–143CrossRefPubMedGoogle Scholar
  105. 105.
    Cragan JD (1999) Teratogen update: methylene blue. Teratology 60:42–48. https://doi.org/10.1002/(SICI)1096-9926(199907)60:1<42::AID-TERA12>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  106. 106.
    Pruthi S, Haakenson C, Brost BC et al (2011) Pharmacokinetics of methylene blue dye for lymphatic mapping in breast cancer-implications for use in pregnancy. Am J Surg 201(1):70–75. https://doi.org/10.1016/j.amjsurg.2009.03.013 CrossRefPubMedGoogle Scholar
  107. 107.
    Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187. https://doi.org/10.1002/bdrb.20288 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Sengpiel V, Elind E, Bacelis J et al (2013) Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: results from a large prospective observational cohort study. BMC Med 11:42. https://doi.org/10.1186/1741-7015-11-42 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Werler MM (1997) Teratogen update: smoking and reproductive outcomes. Teratology 55:382–388. https://doi.org/10.1002/(SICI)1096-9926(199706)55 CrossRefPubMedGoogle Scholar
  110. 110.
    Knopik VS, Maccani MA, Francazio S, McGeary JE (2013) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390. https://doi.org/10.1017/S0954579412000776 CrossRefGoogle Scholar
  111. 111.
    Håkonsen LB, Ernst A, Ramlau-Hansen CH (2014) Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl 16(1):39–49. https://doi.org/10.4103/1008-682X.122351 CrossRefPubMedGoogle Scholar
  112. 112.
    Comasco E, Rangmar J, Eriksson UJ, Oreland L (2017) Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf). https://doi.org/10.1111/apha.12892
  113. 113.
    Pascual M, Montesinos J, Montagud-Romero S et al (2017) TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of foetal alcohol spectrum disorders. J Neuroinflammation 14(1):145. https://doi.org/10.1186/s12974-017-0918-2 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Pearson MA, Hoyme HE, Seaver LH, Rimsza ME (1994) Toluene embryopathy: delineation of the phenotype and comparison with foetal alcohol syndrome. Pediatrics 93:211–215PubMedGoogle Scholar
  115. 115.
    Wells PG, Kim PM, Laposa RR et al (1997) Oxidative damage in chemical teratogenesis. Mutat Res 396:65–78CrossRefPubMedGoogle Scholar
  116. 116.
    Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300. https://doi.org/10.1177/1534735404270335 CrossRefPubMedGoogle Scholar
  117. 117.
    Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78:293–307. https://doi.org/10.1002/bdrc.20085 CrossRefPubMedGoogle Scholar
  118. 118.
    van Gelder MMHJ, van Rooij IALM, Miller RK et al (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16:378–394. https://doi.org/10.1093/humupd/dmp052 CrossRefPubMedGoogle Scholar
  119. 119.
    Rasti S, Ghasemi FS, Abdoli A et al (2016) ToRCH “co-infections” are associated with increased risk of abortion in pregnant women. Congenit Anom 56(2):73–78. https://doi.org/10.1111/cga.12138 CrossRefGoogle Scholar
  120. 120.
    Banatvala JE, Brown DW (2004) Rubella. Lancet 363(9415):1127–1137. https://doi.org/10.1016/S0140-6736(04)15897-2 CrossRefPubMedGoogle Scholar
  121. 121.
    Neu N, Duchon J, Zachariah P (2015) ToRCH infections. Clin Perinatol 42(1):77–103, viii. https://doi.org/10.1016/j.clp.2014.11.001 CrossRefPubMedGoogle Scholar
  122. 122.
    Dunn D, Wallon M, Peyron F et al (1999) Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counseling. Lancet 353:1829–1833. https://doi.org/10.1016/S0140-6736(98)08220-8 CrossRefPubMedGoogle Scholar
  123. 123.
    Silasi M, Cardenas I, Kwon JY et al (2015) Viral infections during pregnancy. Am J Reprod Immunol 73(3):199–213. https://doi.org/10.1111/aji.12355 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Many A, Koren G (2006) Toxoplasmosis during pregnancy. Can Fam Physician 52(1):29–32PubMedPubMedCentralGoogle Scholar
  125. 125.
    Nau J, Eller SK, Wenning J et al (2017) Experimental porcine Toxoplasma gondii infection as a representative model for human toxoplasmosis. Mediat Inflamm 2017:3260289. https://doi.org/10.1155/2017/3260289 CrossRefGoogle Scholar
  126. 126.
    Bowie WR, King AS, Werker DH et al (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350:173–177. https://doi.org/10.1016/S0140-6736(96)11105-3 CrossRefPubMedGoogle Scholar
  127. 127.
    Wallon M, Peyron F, Cornu C et al (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56(9):1223–1231. https://doi.org/10.1093/cid/cit032 CrossRefPubMedGoogle Scholar
  128. 128.
    Forrest JM, Turnbull FM, Sholler GF (2002) Gregg’s congenital rubella patients 60 years later. Med J Aust 177:664–667PubMedGoogle Scholar
  129. 129.
    de Silva M, Munoz FM, Mcmillan M et al (2016) Congenital anomalies: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34(49):6015–6026. https://doi.org/10.1016/j.vaccine.2016.03.047 CrossRefGoogle Scholar
  130. 130.
    Miller E, Cradock-Watson JE, Pollack TM (1982) Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2:781–784. https://doi.org/10.1016/S0140-6736(82)92677-0 CrossRefPubMedGoogle Scholar
  131. 131.
    Webster WS (1998) Teratogen update: congenital rubella. Teratology 58:13–23. https://doi.org/10.1002/(SICI)1096-9926(199807)58:1<13::AID-TERA5>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  132. 132.
    Temple RO, Pass RF, Boll TJ (2000) Neuropsychological functioning in patients with asymptomatic congenital cytomegalovirus infection. J Dev Behav Pediatr 21:417–422CrossRefPubMedGoogle Scholar
  133. 133.
    Carrara J, Delaveaucoupet J, Cordier AG et al (2016) Detailed in utero ultrasound description of 34 cases of congenital cytomegalovirus infection. J Gynecol Obstet Biol Reprod 45(4):397–406. https://doi.org/10.1016/j.jgyn.2015.04.014 CrossRefGoogle Scholar
  134. 134.
    Davis NL, King CC, Kourtis AP (2017) Cytomegalovirus infection in pregnancy. Birth Defects Res 109(5):336–346. https://doi.org/10.1002/bdra.23601 CrossRefPubMedGoogle Scholar
  135. 135.
    Marsico C, Kimberlin DW (2017) Congenital cytomegalovirus infection: advances and challenges in diagnosis, prevention and treatment. Ital J Pediatr 43(1):38. https://doi.org/10.1186/s13052-017-0358-8 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol 41:57–62. https://doi.org/10.1016/j.jcv.2007.09.004 CrossRefPubMedGoogle Scholar
  137. 137.
    Cannon MJ, Griffiths PD, Aston V, Rawlinson WD (2014) Universal new-born screening for congenital CMV infection: what is the evidence of potential benefit? Rev Med Virol 24:291–307. https://doi.org/10.1002/rmv.1790 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Picone O, Teissier N, Cordier AG et al (2014) Detailed in utero ultrasound description of 30 cases of congenital cytomegalovirus infection. Prenat Diagn 34(6):518–524. https://doi.org/10.1002/pd.4340 CrossRefPubMedGoogle Scholar
  139. 139.
    Enders G, Bolley I, Miller E et al (1994) Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343:1548–1551. https://doi.org/10.1016/S0140-6736(94)92943-2 CrossRefPubMedGoogle Scholar
  140. 140.
    Jones KL, Johnson KA, Chambers CD (1994) Offspring of women infected with varicella during pregnancy: a prospective study. Teratology 49:29–32. https://doi.org/10.1002/tera.1420490106 CrossRefPubMedGoogle Scholar
  141. 141.
    Paryani SG, Arvin AM (1986) Intrauterine infection with varicella-zoster virus after maternal varicella. N Engl J Med 314:1542–1546. https://doi.org/10.1056/NEJM198606123142403 CrossRefPubMedGoogle Scholar
  142. 142.
    Pastaszak AL, Levy M, Schick B et al (1994) Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med 330:901–905. https://doi.org/10.1056/NEJM199403313301305 CrossRefGoogle Scholar
  143. 143.
    Lamont RF, Sobel J, Vaisbuch E et al (2011) Parvovirus B19 infection in human pregnancy. BJOG 118(2):175–186. https://doi.org/10.1111/j.1471-0528.2010.02749.x CrossRefPubMedGoogle Scholar
  144. 144.
    Lamont RF, Sobel JD, Carrington D et al (2011b) Varicella zoster virus (chickenpox) infection in pregnancy. BJOG 118(10):1155–1162. https://doi.org/10.1111/j.1471-0528.2011.02983.x CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Schulert GS, Walsh WF, Weitkamp JH (2011) Polymicrogyria and congenital parvovirus B19 infection. AJP Rep 1(2):105–110. https://doi.org/10.1055/s-0031-1285984 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ornoy A, Ergaz Z (2017) Parvovirus B19 infection during pregnancy and risks to the foetus. Birth Defects Res 109(5):311–323. https://doi.org/10.1002/bdra.23588 CrossRefPubMedGoogle Scholar
  147. 147.
    Fell DB, Savitz DA, Kramer MS et al (2016) Maternal influenza and birth outcomes: systematic review of comparative studies. BJOG 124(1):48–59. https://doi.org/10.1111/1471-0528.14143 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Katz MA, Gessner BD, Johnson J et al (2017) Incidence of influenza virus infection among pregnant women: a systematic review. BMC Pregnancy Childbirth 17:155. https://doi.org/10.1186/s12884-017-1333-5 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Barreto de Araújo TV, Rodrigues LC, Ximenes RAA et al (2016) Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infect Dis 16:1356–1363CrossRefGoogle Scholar
  150. 150.
    Gouzil J, Fablet A, Lara E et al (2017) Nonstructural protein NSs of Schmallenberg virus is targeted to the nucleolus and induces nucleolar disorganization. J Virol 91(1):e01263–e01216CrossRefPubMedGoogle Scholar
  151. 151.
    Olmo IG, Carvalho TG, Costa VV et al (2017) Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol 8:1016CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    De Regge N, Van den Berg T, Georges L, Cay B (2013) Diagnosis of Schmallenberg virus infection in malformed lambs and calves and first indications for virus clearance in the fetus. Vet Microbiol 162(2–4):595–600CrossRefPubMedGoogle Scholar
  153. 153.
    Wisløff H, Nordvik BS, Sviland S, Tønnessen R (2014) First documented clinical case of Schmallenberg virus in Norway: foetal malformations in a calf. Vet Rec 174:120CrossRefPubMedGoogle Scholar
  154. 154.
    Brülisauer F, Scholes S, Caldow GL et al (2017) Role of Schmallenberg virus infection in congenital malformations in ruminants in Scotland in spring 2017. Vet Rec 181:341–343CrossRefPubMedGoogle Scholar
  155. 155.
    Harter CA, Benirschke K (1976) Foetal syphilis in the first trimester. Am J Obstet Gynecol 124:705–711. https://doi.org/10.1016/S0002-9378(16)33340-3 CrossRefPubMedGoogle Scholar
  156. 156.
    Singh AE, Romanowski B (1999) Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin Microbiol Rev 12(2):187–209PubMedPubMedCentralGoogle Scholar
  157. 157.
    de Santis M, De Luca C, Mappa I et al (2012) Syphilis infection during pregnancy: foetal risks and clinical management. Infect Dis Obstet Gynecol 430585:1. https://doi.org/10.1155/2012/430585 CrossRefGoogle Scholar
  158. 158.
    Ingall D, Norin L (2006) Syphilis. In: Remington JS, Klein JO (eds) Infectious diseases of the foetus and new-born infant, 5th edn. Saunders, PhiladelphiaGoogle Scholar
  159. 159.
    Pereira AA, Castro AM, Venturini RR et al (2017) Pseudoparalysis of parrot: a diagnostic aid in congenital syphilis. J Pediatr 1:282. https://doi.org/10.1016/j.jpeds.2017.07.048 CrossRefGoogle Scholar
  160. 160.
    Feldkamp ML, Enioutina EY, Botto LD et al (2015) Chlamydia trachomatis IgG3 seropositivity is associated with gastroschisis. J Perinatol 35(11):930–934. https://doi.org/10.1038/jp.2015.115 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Hougland KT, Hanna AM, Meyers R, Null D (2005) Increasing prevalence of gastroschisis in Utah. J Pediatr Surg 40:535–540. https://doi.org/10.1016/j.jpedsurg.2004.11.026 CrossRefPubMedGoogle Scholar
  162. 162.
    Castilla EE, Mastroiacovo P, Orioli IM (2008) Gastroschisis: international epidemiology and public health perspectives. Am J Med Genet C Semin Med Genet 148C:162–179. https://doi.org/10.1002/ajmg.c.30181 CrossRefPubMedGoogle Scholar
  163. 163.
    Vu LT, Nobuhara KK, Laurent C, Shaw GM (2008) Increasing prevalence of gastroschisis: population-based study in California. J Pediatr 152:807–811. https://doi.org/10.1016/j.jpeds.2007.11.037 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciências VeterináriasUniversidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal
  2. 2.Centro de Ciência Animal e Veterinária (CECAV)Universidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal

Personalised recommendations