Cellulases: Role in Lignocellulosic Biomass Utilization

  • Sanjeev Kumar SoniEmail author
  • Amita Sharma
  • Raman Soni
Part of the Methods in Molecular Biology book series (MIMB, volume 1796)


Rapid depletion of fossil fuels worldwide presents a dire situation demanding a potential replacement to surmount the current energy crisis. Lignocellulose presents a logical candidate to be exploited at industrial scale owing to its vast availability, inexpensive and renewable nature. Microbial degradation of lignocellulosic biomass is a lucrative, sustainable, and promising approach to obtain valuable commercial commodities at gigantic scale. The enzymatic hydrolysis involving cellulases is fundamental to all the technologies needed to transform lignocellulosic biomass to valuable industry relevant products. Cellulases have enormous potential to utilize cellulosic biomass, thus reducing environmental stress in addition to production of commodity chemicals resolving the current challenge to meet the energy needs globally. The substitution of petroleum-based fuels with bio-based fuels is the subject of thorough research establishing biofuel production as the future technology to achieve a sustainable, eco-friendly society with a zero waste approach.

Key words

Biofuels Lignocellulose Cellulases Classification Biomass utilization 


  1. 1.
    Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of ligno-cellulosic biomass, converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRefGoogle Scholar
  2. 2.
    Arevalo-Gallegos A, Ahmad Z, Asgher M et al (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach- a review. Int J Biol Macromol 99:30–318CrossRefGoogle Scholar
  3. 3.
    Shrank S, Farahmand F (2011) Biofuels regain momentum. Accessed 29 Aug 2011
  4. 4.
    Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:2631CrossRefGoogle Scholar
  5. 5.
    MNRE (2016) Biomass and cogeneration programme, ministry of new and renewable energy. Ministry of Government of India, New Delhi. Scholar
  6. 6.
    Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5:337–353Google Scholar
  7. 7.
    Menendez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. Bioengineering 2:163–182CrossRefGoogle Scholar
  8. 8.
    Sharma A, Tewari R, Rana SS et al (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179:1346–1380CrossRefGoogle Scholar
  9. 9.
    Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustainable Energy Rev 41:550–567CrossRefGoogle Scholar
  10. 10.
    Han J, Luterbacher JS, Alonso DM et al (2015) A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis. Bioresour Technol 182:258–266CrossRefGoogle Scholar
  11. 11.
    Elba PSB, Maria AF (2007) Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In: The role of agricultural biotechnologies for production of bioenergy in developing countries an FAO seminar held in Rome. 2007.htm. Accessed 12 Oct 2007
  12. 12.
    Ilic DD, Dotzauer E, Trygg L, Broman G (2014) Introduction of large-scale biofuel production in a district heating system - an opportunity for reduction of global greenhouse gas emissions. J Clean Prod 64:552–561CrossRefGoogle Scholar
  13. 13.
    Yao S, Yang Y, Song H et al (2015) Quantitative industrial analysis of lignocellulosic composition in typical agro-residues and extraction of inner hemicelluloses with ionic liquid. J Sci Ind Res 74:58–63Google Scholar
  14. 14.
    Eveline QPT, Buckeridge MS (2015) Do plant cell walls have a code? Plant Sci 241:286–294CrossRefGoogle Scholar
  15. 15.
    Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513CrossRefGoogle Scholar
  16. 16.
    Mohite BV, Kamalja KK, Patil V (2012) Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529. Cellulose 19:1655–1666CrossRefGoogle Scholar
  17. 17.
    Lima M, Gomez L, Steele-King C, Simister R et al (2014) Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnol Biofuels 7:10CrossRefGoogle Scholar
  18. 18.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefGoogle Scholar
  19. 19.
    Balat M, Balata H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRefGoogle Scholar
  20. 20.
    Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Biores Bioprocess 4:7CrossRefGoogle Scholar
  21. 21.
    Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65CrossRefGoogle Scholar
  22. 22.
    Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues, opportunities & perspectives. Int J Biol Sci 5:578–595CrossRefGoogle Scholar
  23. 23.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  24. 24.
    Mattam AJ, Kuila A, Suralikerimath N et al (2016) Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnol Biofuels 9:157CrossRefGoogle Scholar
  25. 25.
    Obeng EM, Adam SNN, Budiman C et al (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Biores Bioproces 4:16CrossRefGoogle Scholar
  26. 26.
    Saranraj P, Stella D, Reetha D (2012) Microbial cellulases and its applications: a review. Int J Biochem Biotech Sci 1:1–12Google Scholar
  27. 27.
    Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258CrossRefGoogle Scholar
  28. 28.
    Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Dev Ind Mycol Washington: Am Inst Biol Sci 5:5–20Google Scholar
  29. 29.
    Esteghalian AR, Srivastava V, Gilkes N et al (2000) An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks. In: Himmel ME, Baker JO, Saddler JN (eds) Glycosyl hydrolases for biomass conversion, ACS symposium series, vol 769. American Chemical Society, Washington, DC, pp 100–111CrossRefGoogle Scholar
  30. 30.
    Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11CrossRefGoogle Scholar
  31. 31.
    Gaurav N, Sivasankari S, Kiran GS et al (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214CrossRefGoogle Scholar
  32. 32.
    Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:151–161CrossRefGoogle Scholar
  33. 33.
    Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580CrossRefGoogle Scholar
  34. 34.
    Soni SK, Batra N, Bansal N, Soni R (2010) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus species S4B2F. Bioresources 5:741–757Google Scholar
  35. 35.
    Bansal N, Tewari R, Gupta JK et al (2011) A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels. Bioresources 6:552–569Google Scholar
  36. 36.
    Bansal N, Soni R, Janveja C, Soni SK (2012) Production of xylanase-cellulase complex by Bacillus subtilis NS7 for the biodegradation of agro-waste residues. Lignocellulose 1:196–209Google Scholar
  37. 37.
    Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32:1341–1346CrossRefGoogle Scholar
  38. 38.
    Bansal N, Janveja C, Tewari R et al (2014) Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis. Appl Biochem Biotechnol 172:141–156CrossRefGoogle Scholar
  39. 39.
    Chandel AK, Singh V (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303CrossRefGoogle Scholar
  40. 40.
    Janveja C, Rana SS, Soni SK (2013) Environmentally acceptable management of kitchen waste residues by using them as substrates for the production of a cocktail of fungal carbohydrates. Int J Chem Environ Sys 4:20–29Google Scholar
  41. 41.
    Janveja C, Rana SS, Soni SK (2013) Kitchen waste residues as potential renewable biomass resources for the production of multiple fungal carbohydrases and second generation bioethanol. J Technol Innov Renew Energy 2:186–200Google Scholar
  42. 42.
    Rana SS, Janveja C, Soni SK (2013) Brewer’s spent grain as a valuable substrate for low cost production of fungal cellulases by statistical modeling in solid state fermentation and generation of cellulosic ethanol. Int J Food Ferment Technol 3:41–55CrossRefGoogle Scholar
  43. 43.
    Mamo G, Faryar R, Nordberg KE (2013) Microbial glycoside hydrolases for biomass utilization in biofuels application. In: Gupta VK, Tuhoy MG (eds) Biofuel technologies: recent developments, 1st edn. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  44. 44.
    Lu J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRefGoogle Scholar
  45. 45.
    Joshi CP, Nookaraju A (2012) New avenues of bioenergy production from plants: green alternatives to petroleum. J Pet Environ Biotechnol 3:7CrossRefGoogle Scholar
  46. 46.
    Sake K, Bugudea R, Reddy V, Khan SV (2013) Production of bioethanol from spent residues of latex yielding plants Euphorbia antiquorum L. and Euphorbia caducifolia Haines. Int J Recent Sci Res 4:4Google Scholar
  47. 47.
    Puri M, Sharma D, Barrow CJ (2011) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30:37–44CrossRefGoogle Scholar
  48. 48.
    Khandare V, Walia S, Singh M, Kaur C (2011) Black carrot (Daucus carota ssp. sativus) juice: processing effects on antioxidant composition and color. Food Bioprod Process 89:482–486CrossRefGoogle Scholar
  49. 49.
    Gil-Chavez GJ, Villa JA, Ayala-Zavala JF et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Safety 12:5–23CrossRefGoogle Scholar
  50. 50.
    Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. Scholar
  51. 51.
    Lavecchia R, Zuorro A (2010) Enhanced lycopene recovery from tomato processing waste by enzymatic degradation of plant tissue components. IREBIC 1:2Google Scholar
  52. 52.
    Zuorro A, Fidaleo M, Lavecchia R (2011) Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb Technol 49:567–573CrossRefGoogle Scholar
  53. 53.
    Hudiyono S, Septian A (2012) Optimization carotenoids isolation of the waste crude palm oil using alpha-amylase, beta-amylase, and cellulase. IOSR J Appl Chem 2:7–12CrossRefGoogle Scholar
  54. 54.
    Kehili M, Schmidt LM, Reynolds W et al (2016) Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol Biofuels 9:261CrossRefGoogle Scholar
  55. 55.
    Sharma R, Sharma PC, Rana JC, Joshi VK (2013) Improving the olive oil yield and quality through enzyme-assisted mechanical extraction, antioxidants and packaging. J Food Process Preserv 39:157–166CrossRefGoogle Scholar
  56. 56.
    Mortabit D, Zyani M, Koraichi SI (2014) Improvement of olive oil quality of Moroccan picholine by Bacillus licheniformis enzyme’s preparation. IJPAS 20:44–52Google Scholar
  57. 57.
    Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial cellulases in industrial applications. Ann Appl Bio Sci 3:23–29Google Scholar
  58. 58.
    Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:463074. Scholar
  59. 59.
    Valdivia M, Galan JL, Laffarga J, Ramos J (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594CrossRefGoogle Scholar
  60. 60.
    Yang S-T, Yu M (2013) Integrated biorefinery for sustainable production of fuels, chemicals, and polymers. In: Yang ST, El-Enshasy H, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  61. 61.
    Kamm B, Kamm M, Gruber PR, Kromus S (2006) Biorefinery systems—an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH, New YorkGoogle Scholar
  62. 62.
    Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems - a LCA case study. Appl Energy 87:47–57CrossRefGoogle Scholar
  63. 63.
    Zhang Z, Hu S, Chen D, Zhu B (2016) An analysis of an ethanol-based whole-crop refinery system in China. Chin J Chem Eng 24:1609–1618CrossRefGoogle Scholar
  64. 64.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875CrossRefGoogle Scholar
  65. 65.
    Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ (2016) Waste biorefineries using filamentous Ascomycetes fungi: present status and future prospects. Bioresour Technol 215:334–345CrossRefGoogle Scholar
  66. 66.
    Taghizadeh-Alisaraeia A, Hosseinia SH, Ghobadianb B, Motevalic A (2017) Biofuel production from citrus wastes: a feasibility study in Iran. Renew Sustain Energy Rev 69:1100–1112CrossRefGoogle Scholar
  67. 67.
    Sánchez AS, Silva YL, Kalid RA et al (2017) Waste bio-refineries for the cassava starch industry: new trends and review of alternatives. Renew Sustain Energy Rev 73:1265–1275CrossRefGoogle Scholar
  68. 68.
    Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10:11CrossRefGoogle Scholar
  69. 69.
    Radhakumari M, Taha M, Shahsavari E et al (2017) Pongamia pinnata Seed residue – a low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production. Renew Energy 103:682–687CrossRefGoogle Scholar
  70. 70.
    Badhan A, McAllister T (2014) Designer plants for biofuels: a review. Curr Metabolomics 2:1–7Google Scholar
  71. 71.
    Loque D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161CrossRefGoogle Scholar
  72. 72.
    Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev 70:793–804CrossRefGoogle Scholar
  73. 73.
    Lau CS, Carrier DJ, Beitle RR et al (2005) A glycoside flavonoid in kudzu (Pueraria lobate). Appl Biochem Biotechnol 121–124:783–794CrossRefGoogle Scholar
  74. 74.
    Telysheva G, Dizhbite T, Bikovens O et al (2011) Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnusincana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65:623–629CrossRefGoogle Scholar
  75. 75.
    Devappa RK, Rakshit SK, Dekker RFH (2015) Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol Adv 33:681–716CrossRefGoogle Scholar
  76. 76.
    Fernández-Dacosta C, Posada JA, Kleerebezem R et al (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologyPanjab UniversityChandigarhIndia
  2. 2.Shaheed Udham Singh College of Research and TechnologyMohaliIndia
  3. 3.Department of BiotechnologyD.A.V. CollegeChandigarhIndia

Personalised recommendations