Advertisement

Methods of Analysis and Meta-Analysis for Identifying Differentially Expressed Genes

  • Panagiota I Kontou
  • Athanasia Pavlopoulou
  • Pantelis G. Bagos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1793)

Abstract

Microarray approaches are widely used high-throughput techniques to assess simultaneously the expression of thousands of genes under certain conditions and study the effects of certain treatments, diseases, and developmental stages. The traditional way to perform such experiments is to design oligonucleotide hybridization probes that correspond to specific genes and then measure the expression of the genes in order to determine which of them are up- or down-regulated compared to a condition that is used as a control. Hitherto, individual experiments cannot capture the bigger picture of how a biological system works and, therefore, data integration from multiple experimental studies and external data repositories is necessary to understand the function of genes and their expression patterns under certain conditions. Therefore, the development of methods for handling, integrating, comparing, interpreting and visualizing microarray data is necessary. The selection of an appropriate method for analysing microarray datasets is not an easy task. In this chapter, we provide an overview of the various methods developed for microarray data analysis, as well as suggestions for choosing the appropriate method for microarray meta-analysis.

Key words

Gene expression Microarrays Differentially expressed genes Meta-analysis Statistical tests Multiple comparisons 

References

  1. 1.
    Bammler T, Beyer RP, Bhattacharya S et al (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2(5):351–356.  https://doi.org/10.1038/nmeth754 PubMedGoogle Scholar
  2. 2.
    Pease AC, Solas D, Sullivan EJ et al (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 91(11):5022–5026PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tang T, Francois N, Glatigny A et al (2007) Expression ratio evaluation in two-colour microarray experiments is significantly improved by correcting image misalignment. Bioinformatics 23(20):2686–2691.  https://doi.org/10.1093/bioinformatics/btm399 PubMedGoogle Scholar
  4. 4.
    Suarez E, Burguete A, McLachlan GJ (2009) Microarray data analysis for differential expression: a tutorial. P R Health Sci J 28(2):89–104PubMedGoogle Scholar
  5. 5.
    Bosotti R, Locatelli G, Healy S et al (2007) Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinformatics 8(Suppl 1):S5.  https://doi.org/10.1186/1471-2105-8-S1-S5 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Tan PK, Downey TJ, Spitznagel EL Jr et al (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31(19):5676–5684PubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang YH, Buckley MJ, Speed TP (2001) Analysis of cDNA microarray images. Brief Bioinform 2(4):341–349PubMedGoogle Scholar
  8. 8.
    Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501.  https://doi.org/10.1038/ng1032 PubMedGoogle Scholar
  9. 9.
    Tseng GC, Oh MK, Rohlin L et al (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 29(12):2549–2557PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193PubMedGoogle Scholar
  11. 11.
    Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134.  https://doi.org/10.1016/S0076-6879(06)11008-3 PubMedGoogle Scholar
  12. 12.
    Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264.  https://doi.org/10.1093/biostatistics/4.2.249 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Pepper SD, Saunders EK, Edwards LE et al (2007) The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics 8:273.  https://doi.org/10.1186/1471-2105-8-273 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tamayo P, Slonim D, Mesirov J et al (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 96(6):2907–2912PubMedPubMedCentralGoogle Scholar
  15. 15.
    Shamir R, Maron-Katz A, Tanay A et al (2005) EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinformatics 6:232.  https://doi.org/10.1186/1471-2105-6-232 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Seo J, Shneiderman B (2002) Interactively exploring hierarchical clustering results. Computer 35(7):80–86.  https://doi.org/10.1109/mc.2002.1016905 Google Scholar
  17. 17.
    Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537. doi:7911 [pii]PubMedGoogle Scholar
  18. 18.
    Radmacher MD, McShane LM, Simon R (2002) A paradigm for class prediction using gene expression profiles. J Comput Biol 9(3):505–511PubMedGoogle Scholar
  19. 19.
    Simon R, Radmacher MD, Dobbin K et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95(1):14–18PubMedGoogle Scholar
  20. 20.
    Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6):673–679PubMedPubMedCentralGoogle Scholar
  21. 21.
    Furey TS, Cristianini N, Duffy N et al (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10):906–914PubMedGoogle Scholar
  22. 22.
    Bura E, Pfeiffer RM (2003) Graphical methods for class prediction using dimension reduction techniques on DNA microarray data. Bioinformatics 19(10):1252–1258PubMedGoogle Scholar
  23. 23.
    Ooi C, Tan P (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19(1):37–44PubMedGoogle Scholar
  24. 24.
    Tibshirani R, Hastie T, Narasimhan B et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99(10):6567–6572.  https://doi.org/10.1073/pnas.082099299 PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nguyen DV, Rocke DM (2002) Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18(1):39–50PubMedGoogle Scholar
  26. 26.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182Google Scholar
  27. 27.
    Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517PubMedGoogle Scholar
  28. 28.
    Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429–2437PubMedGoogle Scholar
  29. 29.
    Ma S, Huang J (2008) Penalized feature selection and classification in bioinformatics. Brief Bioinform 9(5):392–403PubMedPubMedCentralGoogle Scholar
  30. 30.
    Witten D, Tibshirani R (2007) A comparison of fold-change and the t-statistic for microarray data analysis. Analysis 1776:58–85Google Scholar
  31. 31.
    Efron B (1982) The jackknife, the bootstrap and other resampling plans, vol 38. SIAM, PhiladelphiaGoogle Scholar
  32. 32.
    Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
  33. 33.
    Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82(397):171–185Google Scholar
  34. 34.
    Andrews DW, Buchinsky M (2000) A three-step method for choosing the number of bootstrap repetitions. Econometrica 68(1):23–51Google Scholar
  35. 35.
    Davidson R, MacKinnon JG (2000) Bootstrap tests: how many bootstraps? Econome Rev 19(1):55–68Google Scholar
  36. 36.
    Meuwissen TH, Goddard ME (2004) Bootstrapping of gene-expression data improves and controls the false discovery rate of differentially expressed genes. Genet Sel Evol 36(2):191–205.  https://doi.org/10.1051/gse:2003058 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jiang W, Simon R (2007) A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Stat Med 26(29):5320–5334.  https://doi.org/10.1002/sim.2968 PubMedGoogle Scholar
  38. 38.
    Neuhauser M, Jockel KH (2006) A bootstrap test for the analysis of microarray experiments with a very small number of replications. Appl Bioinforma 5(3):173–179. doi:535 [pii]Google Scholar
  39. 39.
    Kaiser J (2007) An exact and a Monte Carlo proposal to the fisher–pitman permutation tests for paired replicates and for independent samples. Stata J 7(3):402–412Google Scholar
  40. 40.
    Tsai CA, Chen YJ, Chen JJ (2003) Testing for differentially expressed genes with microarray data. Nucleic Acids Res 31(9):e52PubMedPubMedCentralGoogle Scholar
  41. 41.
    Yang H, Churchill G (2007) Estimating p-values in small microarray experiments. Bioinformatics 23(1):38–43. doi:btl548 [pii]PubMedGoogle Scholar
  42. 42.
    StataCorp (2013) Stata statistical software: release. StataCorp LP, College Station, TX, p 13Google Scholar
  43. 43.
    R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  44. 44.
    Gottardo R, Pannucci JA, Kuske CR et al (2003) Statistical analysis of microarray data: a Bayesian approach. Biostatistics 4(4):597–620.  https://doi.org/10.1093/biostatistics/4.4.597 PubMedGoogle Scholar
  45. 45.
    Rouder JN, Speckman PL, Sun D et al (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16(2):225–237.  https://doi.org/10.3758/PBR.16.2.225 PubMedGoogle Scholar
  46. 46.
    Gönen M, Johnson WO, Lu Y et al (2005) The Bayesian two-sample t test. Am Stat 59(3):252–257Google Scholar
  47. 47.
    Wang M, Liu G (2015) A simple two-sample Bayesian t-test for hypothesis testing. Am Stat 70(2):195–201Google Scholar
  48. 48.
    Wetzels R, Raaijmakers JGW, Jakab E et al (2009) How to quantify support for and against the null hypothesis: a flexible WinBUGS implementation of a default Bayesian t test. Psychon Bull Rev 16(4):752–760.  https://doi.org/10.3758/PBR.16.4.752 PubMedGoogle Scholar
  49. 49.
    Kruschke JK (2013) Bayesian estimation supersedes the t test. J Exp Psychol Gen 142(2):573–603.  https://doi.org/10.1037/a0029146 PubMedGoogle Scholar
  50. 50.
    Gonen M (2010) The Bayesian t-test and beyond. Methods Mol Biol 620:179–199.  https://doi.org/10.1007/978-1-60761-580-4_4 PubMedGoogle Scholar
  51. 51.
    Fox RJ, Dimmic MW (2006) A two-sample Bayesian t-test for microarray data. BMC Bioinformatics 7:126. doi:1471-2105-7-126 [pii]PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kooperberg C, Aragaki A, Strand AD et al (2005) Significance testing for small microarray experiments. Stat Med 24(15):2281–2298PubMedGoogle Scholar
  53. 53.
    Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17(6):509–519PubMedGoogle Scholar
  54. 54.
    Kayala MA, Baldi P (2012) Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res 40(Web Server issue):W553–W559.  https://doi.org/10.1093/nar/gks420 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lönnstedt I, Speed T (2002) Replicated microarray data. Stat Sin 12:31–46Google Scholar
  56. 56.
    Smyth GK (2005) Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420Google Scholar
  57. 57.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121.  https://doi.org/10.1073/pnas.091062498 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Efron B, Tibshirani R, Storey JD et al (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96(456):1151–1160Google Scholar
  59. 59.
    Tan YD, Fornage M, Fu YX (2006) Ranking analysis of microarray data: a powerful method for identifying differentially expressed genes. Genomics 88(6):846–854. doi:S0888-7543(06)00237-0 [pii]PubMedPubMedCentralGoogle Scholar
  60. 60.
    McCarthy DJ, Smyth GK (2009) Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25(6):765–771PubMedPubMedCentralGoogle Scholar
  61. 61.
    Kadota K, Nakai Y, Shimizu K (2008) A weighted average difference method for detecting differentially expressed genes from microarray data. Algorithms Mol Biol 3:8.  https://doi.org/10.1186/1748-7188-3-8 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Breitling R, Armengaud P, Amtmann A et al (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1-3):83–92.  https://doi.org/10.1016/j.febslet.2004.07.055 PubMedGoogle Scholar
  63. 63.
    Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinforma Comput Biol 3(05):1171–1189Google Scholar
  64. 64.
    Heskes T, Eisinga R, Breitling R (2014) A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinformatics 15(1):1Google Scholar
  65. 65.
    Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Stat Med 18(3):321–359PubMedGoogle Scholar
  66. 66.
    Ramasamy A, Mondry A, Holmes CC et al (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5(9):e184PubMedPubMedCentralGoogle Scholar
  67. 67.
    Shi L, Reid LH, MACQ Consortium et al (2006) The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24(9):1151–1161.  https://doi.org/10.1038/nbt1239 PubMedGoogle Scholar
  68. 68.
    Zeeberg BR, Riss J, Kane DW et al (2004) Mistaken identifiers: gene name errors can be introduced inadvertently when using excel in bioinformatics. BMC bioinformatics 5:80.  https://doi.org/10.1186/1471-2105-5-80 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum, Hillsdale, New JerseyGoogle Scholar
  70. 70.
    Petiti DB (1994) Meta-analysis decision analysis and cost-effectiveness analysis. In: Monographs in epidemiology and biostatistics, vol 24. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedGoogle Scholar
  72. 72.
    Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18(20):2693–2708PubMedGoogle Scholar
  73. 73.
    Choi JK, Yu U, Kim S et al (2003) Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 19(Suppl 1):i84–i90PubMedGoogle Scholar
  74. 74.
    Stevens JR, Doerge RW (2005) Combining affymetrix microarray results. BMC Bioinformatics 6:57. doi:1471-2105-6-57 [pii]PubMedPubMedCentralGoogle Scholar
  75. 75.
    Hu P, Greenwood CM, Beyene J (2009) Using the ratio of means as the effect size measure in combining results of microarray experiments. BMC Syst Biol 3:106.  https://doi.org/10.1186/1752-0509-3-106 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Friedrich JO, Adhikari NK, Beyene J (2008) The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol 8(1):1Google Scholar
  77. 77.
    Friedrich JO, Adhikari NK, Beyene J (2012) Ratio of geometric means to analyze continuous outcomes in meta-analysis: comparison to mean differences and ratio of arithmetic means using empiric data and simulation. Stat Med 31(17):1857–1886.  https://doi.org/10.1002/sim.4501 PubMedGoogle Scholar
  78. 78.
    Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 10(4):277–303PubMedGoogle Scholar
  79. 79.
    Conlon EM, Song JJ, Liu A (2007) Bayesian meta-analysis models for microarray data: a comparative study. BMC Bioinformatics 8:80. doi:1471-2105-8-80 [pii]PubMedPubMedCentralGoogle Scholar
  80. 80.
    Conlon EM, Song JJ, Liu JS (2006) Bayesian models for pooling microarray studies with multiple sources of replications. BMC Bioinformatics 7:247. doi:1471-2105-7-247 [pii]PubMedPubMedCentralGoogle Scholar
  81. 81.
    Marot G, Foulley JL, Mayer CD et al (2009) Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics 25(20):2692–2699.  https://doi.org/10.1093/bioinformatics/btp444 PubMedGoogle Scholar
  82. 82.
    Wang X, Kang DD, Shen K et al (2012) An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. Bioinformatics 28(19):2534–2536. doi:bts485 [pii]PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hong F, Breitling R, McEntee CW et al (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22):2825–2827. doi:btl476 [pii]PubMedGoogle Scholar
  84. 84.
    Zintzaras E, Ioannidis JP (2008) Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem 32(1):38–46. doi:S1476-9271(07)00119-3 [pii]PubMedGoogle Scholar
  85. 85.
    Zintzaras E, Ioannidis JP (2012) METRADISC-XL: a program for meta-analysis of multidimensional ranked discovery oriented datasets including microarrays. Comput Methods Prog Biomed 108(3):1243–1246.  https://doi.org/10.1016/j.cmpb.2012.08.001 Google Scholar
  86. 86.
    Hess A, Iyer H (2007) Fisher's combined p-value for detecting differentially expressed genes using Affymetrix expression arrays. BMC Genomics 8:96. doi:1471-2164-8-96 [pii]PubMedPubMedCentralGoogle Scholar
  87. 87.
    Fisher RA (1946) Statistical methods for research workers, 10th edn. Oliver and Boyd, EdinburghGoogle Scholar
  88. 88.
    Jones DR (1995) Meta-analysis: weighing the evidence. Stat Med 14(2):137–149PubMedGoogle Scholar
  89. 89.
    Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14(1):48–54PubMedGoogle Scholar
  90. 90.
    Edgington ES (1972) An additive method for combining probability values from independent experiments. J Psychol 80(2):351–363Google Scholar
  91. 91.
    Edgington ES (1972) A normal curve method for combining probability values from independent experiments. J Psychol 82(1):85–89Google Scholar
  92. 92.
    Zaykin DV, Zhivotovsky LA, Westfall PH et al (2002) Truncated product method for combining P-values. Genet Epidemiol 22(2):170–185.  https://doi.org/10.1002/gepi.0042 PubMedGoogle Scholar
  93. 93.
    Loughin TM (2004) A systematic comparison of methods for combining p-values from independent tests. Comput Stat Data Anal 47(3):467–485Google Scholar
  94. 94.
    Cousins RD (2007) Annotated bibliography of some papers on combining significances or p-values. arXiv preprint arXiv:07052209Google Scholar
  95. 95.
    Stouffer SA, Suchman EA, De Vinney L et al (1951) Studies in social psychology in world war II. In: The American soldier: adjustment during army life, vol Vol. 1. Princeton University Press, PrincetonGoogle Scholar
  96. 96.
    Zhou B, Shi J, Whittemore AS (2011) Optimal methods for meta-analysis of genome-wide association studies. Genet Epidemiol 35(7):581–591.  https://doi.org/10.1002/gepi.20603 PubMedPubMedCentralGoogle Scholar
  97. 97.
    Dudoit S, Yang YH, Callow MJ, et al (2000) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Technical report # 578Google Scholar
  98. 98.
    Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 62:626–633Google Scholar
  99. 99.
    Holland BS, Copenhaver MD (1987) An improved sequentially rejective bonferroni test procedure. Biometrics 43(2):417–423Google Scholar
  100. 100.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  101. 101.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300Google Scholar
  102. 102.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188Google Scholar
  103. 103.
    Benjamini Y, Liu W (1999) A distribution-free multiple test procedure that controls the false discovery rate. Tel Aviv University, Tel AvivGoogle Scholar
  104. 104.
    Benjamini Y, Liu W (1999) A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. J Stat Plan Inference 82(1):163–170Google Scholar
  105. 105.
    Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3):491–507.  https://doi.org/10.1093/biomet/93.3.491 Google Scholar
  106. 106.
    Ioannidis JP, Allison DB, Ball CA et al (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41(2):149–155PubMedGoogle Scholar
  107. 107.
    Jarvinen AK, Hautaniemi S, Edgren H et al (2004) Are data from different gene expression microarray platforms comparable? Genomics 83(6):1164–1168.  https://doi.org/10.1016/j.ygeno.2004.01.004 PubMedGoogle Scholar
  108. 108.
    Hwang KB, Kong SW, Greenberg SA et al (2004) Combining gene expression data from different generations of oligonucleotide arrays. BMC Bioinformatics 5:159. doi:1471-2105-5-159 [pii]PubMedPubMedCentralGoogle Scholar
  109. 109.
    Moreau Y, Aerts S, De Moor B et al (2003) Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet 19(10):570–577. doi:S0168952503002336 [pii]PubMedGoogle Scholar
  110. 110.
    Chang LC, Lin HM, Sibille E et al (2013) Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics 14:368.  https://doi.org/10.1186/1471-2105-14-368 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Hong F, Breitling R (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24(3):374–382PubMedGoogle Scholar
  112. 112.
    Campain A, Yang YH (2010) Comparison study of microarray meta-analysis methods. BMC Bioinformatics 11:408.  https://doi.org/10.1186/1471-2105-11-408 PubMedPubMedCentralGoogle Scholar
  113. 113.
    Thorlund K, Wetterslev J, Awad T et al (2011) Comparison of statistical inferences from the DerSimonian–Laird and alternative random-effects model meta-analyses–an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Methods 2(4):238–253PubMedGoogle Scholar
  114. 114.
    Abrams K, Sanso B (1998) Approximate Bayesian inference for random effects meta-analysis. Stat Med 17(2):201–218PubMedGoogle Scholar
  115. 115.
    Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40(9):3785–3799.  https://doi.org/10.1093/nar/gkr1265 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Panagiota I Kontou
    • 1
  • Athanasia Pavlopoulou
    • 1
    • 2
  • Pantelis G. Bagos
    • 1
  1. 1.Department of Computer Science and Biomedical InformaticsUniversity of ThessalyLamiaGreece
  2. 2.International Biomedicine and Genome Institute (iBG-Izmir)Dokuz Eylul UniversityIzmirTurkey

Personalised recommendations