Advertisement

Whole Exome Sequencing in Multiple Myeloma to Identify Somatic Single Nucleotide Variants and Key Translocations Involving Immunoglobulin Loci and MYC

  • Brian A. Walker
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1792)

Abstract

Multiple myeloma is a malignancy of terminally differentiated plasma cells in the bone marrow. These plasma cells produce high levels of immunoglobulin which cause end-organ damage. Rearrangements within the immunoglobulin loci are a physiological part of B cell development, but these DNA level double-strand breaks may result in interchromosomal translocations. There are five main translocations involving the Ig loci: t(4;14) 12%, t(6;14) 1%, t(11;14) 15%, t(14;16) 3%, and t(14;20) 2%. These are primary events, found in all cells within the tumor clone and are associated with different prognosis. The t(4;14), t(14;16), and t(14;20) are associated with a poor prognosis, whereas the others are associated with a more favorable prognosis. Rearrangements at the MYC locus are also associated with a poor prognosis and increased expression of MYC. MYC rearrangements are frequent (25%) and involve interchromosomal translocations involving Ig loci or other partners, but also include intrachromosomal inversions, duplications and deletions. As such, the Ig and MYC loci are key players in the myeloma genome and including these in any genomic studies is key to understanding the relationship with other abnormalities. We have designed a custom capture of the Ig and MYC loci which can be added to exome or targeted captures to inform on these key events. This saves on performing additional tests to determine these events, which are generally mandatory for any genetic investigations in myeloma. This custom capture is also relevant to other B cell malignancies where MYC and Ig translocations occur.

Key words

Multiple myeloma Whole exome sequencing Translocations Immunoglobulin MYC Rearrangements Somatic mutations 

References

  1. 1.
    Morgan GJ, Walker BA, Davies FE (2012) The genetic architecture of multiple myeloma. Nat Rev Cancer 12(5):335–348. https://doi.org/10.1038/nrc3257 CrossRefPubMedGoogle Scholar
  2. 2.
    Boyd KD, Ross FM, Chiecchio L, Dagrada G, Konn ZJ, Tapper WJ, Walker BA, Wardell CP, Gregory WM, Szubert AJ, Bell SE, Child JA, Jackson GH, Davies FE, Morgan GJ (2012) A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of 1180 patients treated in the MRC myeloma IX trial. Leukemia 26(2):349–355CrossRefGoogle Scholar
  3. 3.
    Shaughnessy J, Hanamura I, Burington B, Sawyer J, Crowley J, Barlogie B (2005) Interphase FISH-defined amplification of chromosome 1q21 (AMP1q21) identify high-risk subsets among patients with multiple myeloma (MM) lacking metaphase cytogenetic abnormalities (CA). Blood 106(11):185aGoogle Scholar
  4. 4.
    Chiecchio L, Dagrada GP, Protheroe RK, Stockley DM, Smith AG, Orchard KH, Cross NC, Harrison CJ, Ross FM (2009) Loss of 1p and rearrangement of MYC are associated with progression of smouldering myeloma to myeloma: sequential analysis of a single case. Haematologica 94(7):1024–1028. https://doi.org/10.3324/haematol.2008.004440 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chiecchio L, Protheroe RK, Ibrahim AH, Cheung KL, Rudduck C, Dagrada GP, Cabanas ED, Parker T, Nightingale M, Wechalekar A, Orchard KH, Harrison CJ, Cross NC, Morgan GJ, Ross FM (2006) Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 20:1610–1617CrossRefPubMedGoogle Scholar
  6. 6.
    Ross FM, Avet-Loiseau H, Ameye G, Gutierrez NC, Liebisch P, O'Connor S, Dalva K, Fabris S, Testi AM, Jarosova M, Hodkinson C, Collin A, Kerndrup G, Kuglik P, Ladon D, Bernasconi P, Maes B, Zemanova Z, Michalova K, Michau L, Neben K, Hermansen NE, Rack K, Rocci A, Protheroe R, Chiecchio L, Poirel HA, Sonneveld P, Nyegaard M, Johnsen HE, European Myeloma N (2012) Report from the European myeloma network on interphase FISH in multiple myeloma and related disorders. Haematologica 97(8):1272–1277. https://doi.org/10.3324/haematol.2011.056176 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, Proszek PZ, Johnson DC, Kaiser MF, Melchor L, Aronson LI, Scales M, Pawlyn C, Mirabella F, Jones JR, Brioli A, Mikulasova A, Cairns DA, Gregory WM, Quartilho A, Drayson MT, Russell N, Cook G, Jackson GH, Leleu X, Davies FE, Morgan GJ (2015) Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol 33(33):3911–3920. https://doi.org/10.1200/JCO.2014.59.1503 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, Johnson DC, Gonzalez D, Dagrada GP, Protheroe RK, Konn ZJ, Stockley DM, Gregory WM, Davies FE, Ross FM, Morgan GJ (2010) A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116(15):e56–e65. https://doi.org/10.1182/blood-2010-04-279596 CrossRefPubMedGoogle Scholar
  9. 9.
    Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472. https://doi.org/10.1038/nature09837 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, Ashworth A, Davies FE, Morgan GJ (2012) Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120(5):1077–1086. https://doi.org/10.1182/blood-2012-03-412981 CrossRefPubMedGoogle Scholar
  11. 11.
    Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Multiple Myeloma Research C, Getz G, Golub TR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25(1):91–101. https://doi.org/10.1016/j.ccr.2013.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, OM S, Butler AP, Teague JW, Mudie L, Anderson E, Rashid N, Tai YT, Shammas MA, Sperling AS, Fulciniti M, Richardson PG, Parmigiani G, Magrangeas F, Minvielle S, Moreau P, Attal M, Facon T, Futreal PA, Anderson KC, Campbell PJ, Munshi NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997. https://doi.org/10.1038/ncomms3997 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, Fryer RA, Johnson DC, Begum DB, Hulkki Wilson S, Vijayaraghavan G, Titley I, Cavo M, Davies FE, Walker BA, Morgan GJ (2014) Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 28(8):1705–1715. https://doi.org/10.1038/leu.2014.13 CrossRefPubMedGoogle Scholar
  14. 14.
    Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, Proszek PZ, Melchor L, Pawlyn C, Kaiser MF, Johnson DC, Qiang YW, Jones JR, Cairns DA, Gregory WM, Owen RG, Cook G, Drayson MT, Jackson GH, Davies FE, Morgan GJ (2015) APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun 6:6997. https://doi.org/10.1038/ncomms7997 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW, Tytarenko R, Bauer MA, Meissner T, Deshpande S, Patel PH, Buzder T, Molnar G, Peterson EA, van Rhee F, Zangari M, Thanendrarajan S, Schinke C, Tian E, Epstein J, Barlogie B, Davies FE, Heuck CJ, Walker BA, Morgan GJ (2016) Clonal selection and double hit events involving tumor suppressor genes underlie relapse from chemotherapy: myeloma as a model. Blood 128(13):1735–1744. https://doi.org/10.1182/blood-2016-06-723007 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC, Ross FM, Davies FE, Morgan GJ (2006) Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms and genes important in the pathogenesis of multiple myeloma. Blood 108(5):1733–1743CrossRefPubMedGoogle Scholar
  17. 17.
    Walker BA, Morgan GJ (2006) Use of single nucleotide polymorphism-based mapping arrays to detect copy number changes and loss of heterozygosity in multiple myeloma. Clin Lymphoma Myeloma 7(3):186–191CrossRefPubMedGoogle Scholar
  18. 18.
    Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM (1996) Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 88(2):674–681PubMedGoogle Scholar
  19. 19.
    Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, Bergsagel PL (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nishida K, Tamura A, Nakazawa N, Ueda Y, Abe T, Matsuda F, Kashima K, Taniwaki M (1997) The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 90(2):526–534PubMedGoogle Scholar
  21. 21.
    Lieber MR (2016) Mechanisms of human lymphoid chromosomal translocations. Nat Rev Cancer 16(6):387–398. https://doi.org/10.1038/nrc.2016.40 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Walker BA, Wardell CP, Johnson DC, Kaiser MF, Begum DB, Dahir NB, Ross FM, Davies FE, Gonzalez D, Morgan GJ (2013) Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 121(17):3413–3419. https://doi.org/10.1182/blood-2012-12-471888 CrossRefPubMedGoogle Scholar
  23. 23.
    Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB, Dahir NB, Johnson DC, Ross FM, Davies FE, Morgan GJ (2014) Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J 4:e191. https://doi.org/10.1038/bcj.2014.13 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Affer M, Chesi M, Chen WD, Keats JJ, Demchenko YN, Tamizhmani K, Garbitt VM, Riggs DL, Brents LA, Roschke AV, Van Wier S, Fonseca R, Bergsagel PL, Kuehl WM (2014) Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28(8):1725–1735. https://doi.org/10.1038/leu.2014.70 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Myeloma InstituteUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations