Advertisement

Analysis of Global Gene Expression Profiles

  • Alboukadel Kassambara
  • Jerome Moreaux
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1792)

Abstract

DNA microarrays have considerably helped to improve the understanding of biological processes and diseases including multiple myeloma (MM). GEP analyses have been successful to classify MM, define risk, identify therapeutic targets, predict treatment response, and understand drug resistance.

This generated large amounts of publicly available data that could benefit from easy-to-use bioinformatics resources to analyze them. Here we present easy-to-use and open-access bioinformatics tools to extract and visualize the most prominent information from GEP data.

Key words

Microarrays Data mining Bioinformatics Multiple myeloma GenomicScape Molecular heterogeneity 

Notes

Acknowledgments

This work was supported by grants from French INCA (Institut National du Cancer) Institute (PLBIO15-256) and ITMO Cancer (MM&TT).

References

  1. 1.
    Mahtouk K, Hose D, De Vos J, Moreaux J, Jourdan M, Rossi JF, Reme T, Goldschmidt H, Klein B (2007) Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications. Clin Cancer Res 13(24):7289–7295CrossRefGoogle Scholar
  2. 2.
    Chng WJ, Chung TH, Kumar S, Usmani S, Munshi N, Avet-Loiseau H, Goldschmidt H, Durie B, Sonneveld P (2016) Gene signature combinations improve prognostic stratification of multiple myeloma patients. Leukemia 30(5):1071–1078. https://doi.org/10.1038/leu.2015.341 CrossRefGoogle Scholar
  3. 3.
    Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy JD Jr (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028. https://doi.org/10.1182/blood-2005-11-013458 CrossRefGoogle Scholar
  4. 4.
    Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106(1):296–303. https://doi.org/10.1182/blood-2005-01-0034 CrossRefGoogle Scholar
  5. 5.
    Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A (2005) Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 23(29):7296–7306. https://doi.org/10.1200/JCO.2005.01.3870 CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Zhang Q, Stephens O, Heuck CJ, Tian E, Sawyer JR, Cartron-Mizeracki MA, Qu P, Keller J, Epstein J, Barlogie B, Shaughnessy JD Jr (2012) Prediction of cytogenetic abnormalities with gene expression profiles. Blood 119(21):e148–e150. https://doi.org/10.1182/blood-2011-10-388702 CrossRefGoogle Scholar
  7. 7.
    Reme T, Hose D, Theillet C, Klein B (2013) Modeling risk stratification in human cancer. Bioinformatics 29(9):1149–1157. https://doi.org/10.1093/bioinformatics/btt124 CrossRefGoogle Scholar
  8. 8.
    Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, Stewart JP, Kordsmeier B, Randolph C, Williams DR, Xiao Y, Xu H, Epstein J, Anaissie E, Krishna SG, Cottler-Fox M, Hollmig K, Mohiuddin A, Pineda-Roman M, Tricot G, van Rhee F, Sawyer J, Alsayed Y, Walker R, Zangari M, Crowley J, Barlogie B (2007) A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109(6):2276–2284. https://doi.org/10.1182/blood-2006-07-038430 CrossRefGoogle Scholar
  9. 9.
    Moreaux J, Klein B, Bataille R, Descamps G, Maiga S, Hose D, Goldschmidt H, Jauch A, Reme T, Jourdan M, Amiot M, Pellat-Deceunynck C (2011) A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica 96(4):574–582. https://doi.org/10.3324/haematol.2010.033456 CrossRefGoogle Scholar
  10. 10.
    Moreaux J, Reme T, Leonard W, Veyrune JL, Requirand G, Goldschmidt H, Hose D, Klein B (2012) Development of gene expression-based score to predict sensitivity of multiple myeloma cells to DNA methylation inhibitors. Mol Cancer Ther 11(12):2685–2692. https://doi.org/10.1158/1535-7163.MCT-12-0721 CrossRefGoogle Scholar
  11. 11.
    Moreaux J, Reme T, Leonard W, Veyrune JL, Requirand G, Goldschmidt H, Hose D, Klein B (2013) Gene expression-based prediction of myeloma cell sensitivity to histone deacetylase inhibitors. Br J Cancer 109(3):676–685. https://doi.org/10.1038/bjc.2013.392 CrossRefGoogle Scholar
  12. 12.
    Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P, Attal M, Harousseau JL, Moreau P, Bataille R, Campion L, Avet-Loiseau H, Minvielle S, Intergroupe Francophone du M (2008) Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe francophone du Myelome. J Clin Oncol Off J Am Soc Clin Oncol 26(29):4798–4805. https://doi.org/10.1200/JCO.2007.13.8545 CrossRefGoogle Scholar
  13. 13.
    Hose D, Reme T, Hielscher T, Moreaux J, Messner T, Seckinger A, Benner A, Shaughnessy JD Jr, Barlogie B, Zhou Y, Hillengass J, Bertsch U, Neben K, Mohler T, Rossi JF, Jauch A, Klein B, Goldschmidt H (2011) Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 96(1):87–95. https://doi.org/10.3324/haematol.2010.030296 CrossRefGoogle Scholar
  14. 14.
    Kassambara A, Gourzones-Dmitriev C, Sahota S, Reme T, Moreaux J, Goldschmidt H, Constantinou A, Pasero P, Hose D, Klein B (2014) A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget 5(9):2487–2498CrossRefGoogle Scholar
  15. 15.
    Kassambara A, Hose D, Moreaux J, Reme T, Torrent J, Rossi JF, Goldschmidt H, Klein B (2012) Identification of pluripotent and adult stem cell genes unrelated to cell cycle and associated with poor prognosis in multiple myeloma. PLoS One 7(7):e42161. https://doi.org/10.1371/journal.pone.0042161 CrossRefGoogle Scholar
  16. 16.
    Kassambara A, Hose D, Moreaux J, Walker BA, Protopopov A, Reme T, Pellestor F, Pantesco V, Jauch A, Morgan G, Goldschmidt H, Klein B (2012) Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma. Haematologica 97(4):622–630. https://doi.org/10.3324/haematol.2011.046821 CrossRefGoogle Scholar
  17. 17.
    Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B, el Jarari L, Mulligan G, Gregory W, Morgan G, Goldschmidt H, Lokhorst HM, van Duin M, Sonneveld P (2012) A gene expression signature for high-risk multiple myeloma. Leukemia 26(11):2406–2413. https://doi.org/10.1038/leu.2012.127 CrossRefGoogle Scholar
  18. 18.
    Chng WJ, Braggio E, Mulligan G, Bryant B, Remstein E, Valdez R, Dogan A, Fonseca R (2008) The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 111(3):1603–1609. https://doi.org/10.1182/blood-2007-06-097774 CrossRefGoogle Scholar
  19. 19.
    Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Reme T, Bourin P (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21(5):1079–1088CrossRefGoogle Scholar
  20. 20.
    Moreaux J, Hose D, Kassambara A, Reme T, Moine P, Requirand G, Goldschmidt H, Klein B (2011) Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration. Blood 117(4):1280–1290. https://doi.org/10.1182/blood-2010-04-279760 CrossRefGoogle Scholar
  21. 21.
    Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, Bicciato S, Nico B, Ribatti D, Dammacco F, Corradini P (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23(23):5334–5346CrossRefGoogle Scholar
  22. 22.
    Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Reme T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi JF, Jauch A, Klein B, Mohler T (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114(1):128–143. https://doi.org/10.1182/blood-2008-10-184226 CrossRefGoogle Scholar
  23. 23.
    Mahtouk K, Moreaux J, Hose D, Reme T, Meissner T, Jourdan M, Rossi JF, Pals ST, Goldschmidt H, Klein B (2010) Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer 10:198. https://doi.org/10.1186/1471-2407-10-198 CrossRefGoogle Scholar
  24. 24.
    Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P, Pantesco V, De Vos J, Jourdan E, Jauch A, Legouffe E, Moos M, Fiol G, Goldschmidt H, Rossi JF, Hose D, Klein B (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106(3):1021–1030CrossRefGoogle Scholar
  25. 25.
    Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C, Moine P, Rossi JF, Klein B, Tarte K (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103(8):3148–3157CrossRefGoogle Scholar
  26. 26.
    Burington B, Barlogie B, Zhan F, Crowley J, Shaughnessy JD Jr (2008) Tumor cell gene expression changes following short-term in vivo exposure to single agent chemotherapeutics are related to survival in multiple myeloma. Clin Cancer Res 14(15):4821–4829. https://doi.org/10.1158/1078-0432.CCR-07-4568 CrossRefGoogle Scholar
  27. 27.
    Shaughnessy JD Jr, Qu P, Usmani S, Heuck CJ, Zhang Q, Zhou Y, Tian E, Hanamura I, van Rhee F, Anaissie E, Epstein J, Nair B, Stephens O, Williams R, Waheed S, Alsayed Y, Crowley J, Barlogie B (2011) Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total therapy 3. Blood 118(13):3512–3524. https://doi.org/10.1182/blood-2010-12-328252 CrossRefGoogle Scholar
  28. 28.
    Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, Koenig E, Fergus A, Huang Y, Richardson P, Trepicchio WL, Broyl A, Sonneveld P, Shaughnessy JD Jr, Bergsagel PL, Schenkein D, Esseltine DL, Boral A, Anderson KC (2007) Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 109(8):3177–3188. https://doi.org/10.1182/blood-2006-09-044974 CrossRefGoogle Scholar
  29. 29.
    Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A, Ventura M, Eramo PO, Viscomi C, Arbitrio M, Rossi M, Caraglia M, Munshi NC, Anderson KC, Tassone P (2008) In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 143(4):520–531. https://doi.org/10.1111/j.1365-2141.2008.07387.x CrossRefGoogle Scholar
  30. 30.
    Chauhan D, Auclair D, Robinson EK, Hideshima T, Li G, Podar K, Gupta D, Richardson P, Schlossman RL, Krett N, Chen LB, Munshi NC, Anderson KC (2002) Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 21(9):1346–1358CrossRefGoogle Scholar
  31. 31.
    Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, Libermann TA, Richon VM, Marks PA, Anderson KC (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101(2):540–545CrossRefGoogle Scholar
  32. 32.
    Maes K, De Smedt E, Kassambara A, Hose D, Seckinger A, Van Valckenborgh E, Menu E, Klein B, Vanderkerken K, Moreaux J, De Bruyne E (2015) In vivo treatment with epigenetic modulating agents induces transcriptional alterations associated with prognosis and immunomodulation in multiple myeloma. Oncotarget 6(5):3319–3334CrossRefGoogle Scholar
  33. 33.
    Kronke J, Kuchenbauer F, Kull M, Teleanu V, Bullinger L, Bunjes D, Greiner A, Kolmus S, Kopff S, Schreder M, Mugge LO, Straka C, Engelhardt M, Dohner H, Einsele H, Bassermann F, Bargou R, Knop S, Langer C (2017) IKZF1 expression is a prognostic marker in newly diagnosed standard-risk multiple myeloma treated with lenalidomide and intensive chemotherapy: a study of the German myeloma study group (DSMM). Leukemia 31(6):1363–1367. https://doi.org/10.1038/leu.2016.384 CrossRefGoogle Scholar
  34. 34.
    Bila J, Sretenovic A, Jelicic J, Tosic N, Glumac I, Fekete MD, Antic D, Balint MT, Markovic O, Milojevic Z, Radojkovic M, Trajkovic G, Puric M, Pavlovic S, Mihaljevic B (2016) Prognostic significance of Cereblon expression in patients with multiple myeloma. Clin Lymphoma Myeloma Leuk 16(11):610–615. https://doi.org/10.1016/j.clml.2016.08.007 CrossRefGoogle Scholar
  35. 35.
    Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T, Bollore K, Vendrell JP, Le Gallou S, Mourcin F, De Vos J, Kassambara A, Duperray C, Hose D, Fest T, Tarte K, Klein B (2011) Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J Immunol 187(8):3931–3941. https://doi.org/10.4049/jimmunol.1101230 CrossRefGoogle Scholar
  36. 36.
    Jourdan M, Caraux A, De Vos J, Fiol G, Larroque M, Cognot C, Bret C, Duperray C, Hose D, Klein B (2009) An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 114(25):5173–5181. https://doi.org/10.1182/blood-2009-07-235960 CrossRefGoogle Scholar
  37. 37.
    Jourdan M, Cren M, Robert N, Bollore K, Fest T, Duperray C, Guilloton F, Hose D, Tarte K, Klein B (2014) IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia 28(8):1647–1656. https://doi.org/10.1038/leu.2014.61 CrossRefGoogle Scholar
  38. 38.
    Schoenhals M, Jourdan M, Seckinger A, Pantesco V, Hose D, Kassambara A, Moreaux J, Klein B (2016) Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage. Cell Cycle 15(14):1919–1928. https://doi.org/10.1080/15384101.2016.1191709 CrossRefGoogle Scholar
  39. 39.
    Kassambara A, Reme T, Jourdan M, Fest T, Hose D, Tarte K, Klein B (2015) GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLoS Comput Biol 11(1):e1004077. https://doi.org/10.1371/journal.pcbi.1004077 CrossRefGoogle Scholar
  40. 40.
    Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, Moreaux J (2016) Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer 114(5):519–523. https://doi.org/10.1038/bjc.2016.20 CrossRefGoogle Scholar
  41. 41.
    Viziteu E, Klein B, Basbous J, Lin YL, Hirtz C, Gourzones C, Tiers L, Bruyer A, Vincent L, Grandmougin C, Seckinger A, Goldschmidt H, Constantinou A, Pasero P, Hose D, Moreaux J (2017) RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia 31(10):2104–2113. https://doi.org/10.1038/leu.2017.54 CrossRefGoogle Scholar
  42. 42.
    Hothorn T, Lausen B (2003) On the exact distribution of maximally selected rank statistics. Comput Stat Data Anal 43(2):121–137. https://doi.org/10.1016/S0167-9473(02)00225-6 CrossRefGoogle Scholar
  43. 43.
    Yu G, He QY (2016) ReactomePA: an R/bioconductor package for reactome pathway analysis and visualization. Mol BioSyst 12(2):477–479. https://doi.org/10.1039/c5mb00663e CrossRefGoogle Scholar
  44. 44.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological HematologyCHU MontpellierMontpellierFrance
  2. 2.Institute of Human Genetics, UMR 9002, CNRS and University of MontpellierMontpellierFrance
  3. 3.UFR de Médecine, University of MontpellierMontpellierFrance
  4. 4.Department of Biological Hematology, Laboratory for Monitoring Innovative TherapiesHopital Saint-Eloi—CHRU de MontpellierMontpellierFrance

Personalised recommendations