Advertisement

Myelin pp 15-23 | Cite as

Immunohistochemical Analysis of Myelin Structures

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1791)

Abstract

Immunochemistry (immunocytochemistry for cells and immunohistochemistry for tissues) is a method used to label specific antigens, based on highly specific antibody–epitope interactions. The resulting labeling can be visualized and imaged through microscopy adapted to the type of detection system used (fluorophore, peroxidase, etc.). In the nervous system, myelin is a complex membrane structure, generated by myelinating glial cells, which ensheath axons and facilitate electrical conduction. Myelin alteration has been shown to occur in various neurological diseases, in which it is associated with functional deficits. Here, we focus on myelin detection by immunofluorescence using immunochemistry protocols based on antibodies directed against major myelin proteins.

Key words

Myelin staining Immunochemistry Antibodies Antigens 

References

  1. 1.
    Desmazieres A, Sol-Foulon N, Lubetzki C (2012) Changes at the nodal and perinodal axonal domains: a basis for multiple sclerosis pathology? Mult Scler 18(2):133–137. https://doi.org/10.1177/1352458511434370 CrossRefPubMedGoogle Scholar
  2. 2.
    Devaux JJ (2012) Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. Am J Pathol 181(4):1402–1413. https://doi.org/10.1016/j.ajpath.2012.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cammer W, Norton WT (1976) Disc gel electrophoresis of myelin proteins: new observations on development of the intermediate proteins (DM-20). Brain Res 109(3):643–648CrossRefGoogle Scholar
  4. 4.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927CrossRefGoogle Scholar
  5. 5.
    Kluver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12(4):400–403CrossRefGoogle Scholar
  6. 6.
    Meier C (1976) Some observations on early myelination in the human spinal cord. Light and electron microscope study. Brain Res 104(1):21–32CrossRefGoogle Scholar
  7. 7.
    Hori SH (1963) A simplified acid hematein test for phospholipids. Stain Technol 38:221–225CrossRefGoogle Scholar
  8. 8.
    Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1(2):203–209CrossRefGoogle Scholar
  9. 9.
    Freeman SA, Desmazieres A, Simonnet J, Gatta M, Pfeiffer F, Aigrot MS, Rappeneau Q, Guerreiro S, Michel PP, Yanagawa Y, Barbin G, Brophy PJ, Fricker D, Lubetzki C, Sol-Foulon N (2015) Acceleration of conduction velocity linked to clustering of nodal components precedes myelination. Proc Natl Acad Sci U S A 112(3):E321–E328. https://doi.org/10.1073/pnas.1419099112 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182CrossRefGoogle Scholar
  11. 11.
    Tepavcevic V, Kerninon C, Aigrot MS, Meppiel E, Mozafari S, Arnould-Laurent R, Ravassard P, Kennedy TE, Nait-Oumesmar B, Lubetzki C (2014) Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol 76(2):252–268. https://doi.org/10.1002/ana.24201 CrossRefPubMedGoogle Scholar
  12. 12.
    Spassky N, Olivier C, Cobos I, LeBras B, Goujet-Zalc C, Martinez S, Zalc B, Thomas JL (2001) The early steps of oligodendrogenesis: insights from the study of the plp lineage in the brain of chicks and rodents. Dev Neurosci 23(4–5):318–326CrossRefGoogle Scholar
  13. 13.
    Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15(12):1621–1623. https://doi.org/10.1038/nn.3263 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang HJ, Vainshtein A, Maik-Rachline G, Peles E (2016) G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun 7:10884. https://doi.org/10.1038/ncomms10884 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121. https://doi.org/10.1038/ncomms7121 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. https://doi.org/10.1038/nn.3469 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521. https://doi.org/10.1523/JNEUROSCI.3521-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut du cerveau et de la moelle épinière (ICM), INSERM-UPMC UMRS 1127 CNRS 7225, Hopital Pitié-SalpétrièreParis Cedex 13France

Personalised recommendations