Skip to main content

Positron Emission Tomography Imaging of Tumor Apoptosis with a Caspase-Sensitive Nano-Aggregation Tracer [18F]C-SNAT

  • Protocol
  • First Online:
Reporter Gene Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1790))

Abstract

Cellular apoptosis is an important criterion for evaluating the efficacy of cancer therapies. We have developed a new small molecule probe ([18F]C-SNAT) for positron emission tomography (PET) imaging of apoptosis. [18F]C-SNAT, when activated by caspase-3 and glutathione reduction, undergoes intramolecular cyclization followed by self-assembly to form nano-aggregates in apoptotic cells. This unique mechanism creates preferential retention of gamma radiation signals in targeted cells and thus enables the detection of apoptosis using PET, a sensitive and clinically practical technique. This protocol describes the chemical synthesis, radiolabeling and PET imaging of apoptosis using this probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S. https://doi.org/10.2967/jnumed.108.057307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4(8):592–603. https://doi.org/10.1038/nrc1412

    Article  PubMed  CAS  Google Scholar 

  3. Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107. https://doi.org/10.1038/nrc2289

    Article  PubMed  CAS  Google Scholar 

  4. De Saint-Hubert M, Prinsen K, Mortelmans L et al (2009) Molecular imaging of cell death. Methods 48(2):178–187. https://doi.org/10.1016/j.ymeth.2009.03.022

    Article  PubMed  CAS  Google Scholar 

  5. Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95S. https://doi.org/10.2967/jnumed.107.045898

    Article  PubMed  CAS  Google Scholar 

  6. Zeng W, Wang X, Xu P et al (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5(6):559–582. https://doi.org/10.7150/thno.11548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Belhocine T, Steinmetz N, Hustinx R et al (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8(9):2766–2774

    PubMed  CAS  Google Scholar 

  8. Kietselaer BL, Reutelingsperger CP, Heidendal GA et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350(14):1472–1473. https://doi.org/10.1056/NEJM200404013501425

    Article  PubMed  CAS  Google Scholar 

  9. Reshef A, Shirvan A, Akselrod-Ballin A et al (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51(6):837–840. https://doi.org/10.2967/jnumed.109.063917

    Article  PubMed  CAS  Google Scholar 

  10. Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22(10):388–393

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen QD, Smith G, Glaser M et al (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci USA 106(38):16375–16380. https://doi.org/10.1073/pnas.0901310106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou D, Chu W, Rothfuss J et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16(19):5041–5046. https://doi.org/10.1016/j.bmcl.2006.07.045

    Article  PubMed  CAS  Google Scholar 

  13. Methot N, Vaillancourt JP, Huang J et al (2004) A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation. J Biol Chem 279(27):27905–27914. https://doi.org/10.1074/jbc.M400247200

    Article  PubMed  CAS  Google Scholar 

  14. Bedner E, Smolewski P, Amstad P et al (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 259(1):308–313. https://doi.org/10.1006/excr.2000.4955

    Article  PubMed  CAS  Google Scholar 

  15. Edgington LE, Berger AB, Blum G et al (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15(8):967–973. https://doi.org/10.1038/nm.1938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Laxman B, Hall DE, Bhojani MS et al (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99(26):16551–16555. https://doi.org/10.1073/pnas.252644499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bullok K, Piwnica-Worms D (2005) Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. J Med Chem 48(17):5404–5407. https://doi.org/10.1021/jm050008p

    Article  PubMed  CAS  Google Scholar 

  18. Ai HW, Hazelwood KL, Davidson MW et al (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5(5):401–403. https://doi.org/10.1038/nmeth.1207

    Article  PubMed  CAS  Google Scholar 

  19. Bardet PL, Kolahgar G, Mynett A et al (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA 105(37):13901–13905. https://doi.org/10.1073/pnas.0806983105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johnson JR, Kocher B, Barnett EM et al (2012) Caspase-activated cell-penetrating peptides reveal temporal coupling between endosomal release and apoptosis in an RGC-5 cell model. Bioconjug Chem 23(9):1783–1793. https://doi.org/10.1021/bc300036z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bauer C, Bauder-Wuest U, Mier W et al (2005) 131I-labeled peptides as caspase substrates for apoptosis imaging. J Nucl Med 46(6):1066–1074

    PubMed  CAS  Google Scholar 

  22. Ye DJ, Shuhendler AJ, Cui LN et al (2014) Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem 6(6):519–526. https://doi.org/10.1038/Nchem.1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shen B, Jeon J, Palner M et al (2013) Positron emission tomography imaging of drug-induced tumor apoptosis with a Caspase-triggered Nanoaggregation probe. Angew Chem Int Ed 52(40):10511–10514. https://doi.org/10.1002/Anie.201303422

    Article  CAS  Google Scholar 

  24. Ye D, Shuhendler AJ, Pandit P et al (2014) Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem Sci 4(10):3845–3852. https://doi.org/10.1039/C4SC01392A

    Article  PubMed  Google Scholar 

  25. Palner M, Shen B, Jeon J et al (2015) Preclinical kinetic analysis of the Caspase-3/7 PET tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J Nucl Med 56(9):1415–1421. https://doi.org/10.2967/jnumed.115.155259

    Article  PubMed  CAS  Google Scholar 

  26. Witney TH, Hoehne A, Reeves RE et al (2015) A systematic comparison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment. Clin Cancer Res 21(17):3896–3905. https://doi.org/10.1158/1078-0432.CCR-14-3176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghong Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Z., Rao, J. (2018). Positron Emission Tomography Imaging of Tumor Apoptosis with a Caspase-Sensitive Nano-Aggregation Tracer [18F]C-SNAT. In: Dubey, P. (eds) Reporter Gene Imaging. Methods in Molecular Biology, vol 1790. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7860-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7860-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7858-8

  • Online ISBN: 978-1-4939-7860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics