Advertisement

Vacuolar Targeting and Characterization of Recombinant Antibodies

  • Carolina Gabriela Ocampo
  • Silvana Petruccelli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1789)

Abstract

Plant-based platforms are extensively use for the expression of recombinant proteins, including monoclonal antibodies (mAbs). Generally, immunoglobulins (Igs) are sorted to the apoplast, which is often afflicted with intense proteolysis. Here, we describe methods to transiently express mAbs sorted to central vacuole in Nicotiana benthamiana leaves and to characterize the obtained IgG. Central vacuole is an appropriate compartment for the efficient production of Abs, consequently vacuolar sorting should be considered as an alternative strategy to obtain high protein yields.

Key words

Immunoglobulin N-glycosylation Vacuolar sorting signals Secretory pathway Vacuolar transport Molecular farming 

Notes

Acknowledgment

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through the grants PICT Start Up 2015-0010 and PICT 2016-1722 and by Universidad Nacional de La Plata (grant 11X/754) to S.P. S.P. is a researcher from CONICET and Full Professor of the Facultad de Ciencias Exactas-UNLP; CGO is a fellow at CONICET.

References

  1. 1.
    Marty F (1999) Plant vacuoles. Plant Cell 11:587–599CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155CrossRefPubMedGoogle Scholar
  3. 3.
    Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi S-i, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555CrossRefPubMedGoogle Scholar
  5. 5.
    Marin Viegas VS, Ocampo CG, Petruccelli S (2017) Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields. Bioengineered 8:203–211CrossRefPubMedGoogle Scholar
  6. 6.
    Xiang L, Etxeberria E, Van Den Ende W (2013) Vacuolar protein sorting mechanisms in plants. FEBS J 280:979–993CrossRefPubMedGoogle Scholar
  7. 7.
    De Marchis F, Bellucci M, Pompa A (2013) Traffic of human alpha-mannosidase in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole pathway without involving the Golgi complex. Plant Physiol 161:1769–1782CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ocampo CG, Lareu F, Marin Viegas VS, Mangano S, Loos A, Steinkellner H, Petruccelli S (2016) Vacuolar targeting of recombinant antibodies in Nicotiana benthamiana. Plant Biotechnol J 14:2265–2275. https://doi.org/10.1111/pbi.12580 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Matsuoka K, Neuhaus JM (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174CrossRefGoogle Scholar
  11. 11.
    Goulet C, Khalf M, Sainsbury F, D’Aoust MA, Michaud D (2012) A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J 10:83–94CrossRefPubMedGoogle Scholar
  12. 12.
    Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648CrossRefPubMedGoogle Scholar
  13. 13.
    Niemer M, Mehofer U, Torres Acosta JA, Verdianz M, Henkel T, Loos A, Strasser R, Maresch D, Rademacher T, Steinkellner H et al (2014) The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 9:493–500CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Castilho A, Steinkellner H (2012) Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 7:1088–1098CrossRefPubMedGoogle Scholar
  15. 15.
    Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333–344CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gomord V, Fitchette A, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587CrossRefPubMedGoogle Scholar
  18. 18.
    Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48CrossRefPubMedGoogle Scholar
  19. 19.
    Misaki R, Sakai Y, Omasa T, Fujiyama K, Seki T (2011) N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells. J Biosci Bioeng 112(5):476–484CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carolina Gabriela Ocampo
    • 1
  • Silvana Petruccelli
    • 1
  1. 1.CIDCA-CCT-La Plata CONICET, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP)La PlataArgentina

Personalised recommendations