Skip to main content

Epitope Mapping of Antibody-Antigen Interactions with X-Ray Crystallography

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1785))

Abstract

Therapeutic antibodies constitute one of the fastest areas of growth in the field of biologic drugs. A molecular understanding of how antibodies interact with their target antigens is known as epitope mapping. The data provided by epitope mapping is extremely valuable in the process of antibody humanization, as well as in vaccine design. In many cases the epitope recognized by the antibody is a complex, discontinuous 3D conformational epitope. Mapping the interactions of an antibody to a conformational epitope is difficult by many standard approaches. X-ray crystallography is considered to be the gold standard of epitope mapping as it can provide a near atomic resolution model of the antibody-antigen interaction. An X-ray structure allows for inspection of specific antibody-antigen interactions, even in the case of complex conformational epitopes. The method described here can be adapted for structure determination and epitope mapping of any antibody fragment to a simple or complex antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin F (2016) Antibodies as leading tools to unlock the therapeutic potential in human disease. Immunol Rev 270(1):5–7

    Article  CAS  PubMed  Google Scholar 

  2. Strohl WR, Knight DM (2009) Discovery and development of biopharmaceuticals: current issues. Curr Opin Biotechnol 20(6):668–672

    Article  CAS  PubMed  Google Scholar 

  3. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255

    Article  CAS  PubMed  Google Scholar 

  4. Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21(7):1076–1113

    Article  CAS  PubMed  Google Scholar 

  5. Liljeroos L, Malito E, Ferlenghi I, Bottomley MJ (2015) Structural and computational biology in the design of immunogenic vaccine antigens. J Immunol Res 2015:156241

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carter JM, Loomis-Price L (2004) B cell epitope mapping using synthetic peptides. Curr Protoc Immunol chapter 9(unit 9):4

    PubMed  Google Scholar 

  7. Bardelli M, Livoti E, Simonelli L, Pedotti M, Moraes A, Valente AP, Varani L (2015) Epitope mapping by solution NMR spectroscopy. J Mol Recognit 28(6):393–400

    Article  CAS  PubMed  Google Scholar 

  8. Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO (2018) Mass spectrometric epitope mapping. Mass Spectrom Rev 37(2):229–241

    Article  CAS  PubMed  Google Scholar 

  9. Walter G (1986) Production and use of antibodies against synthetic peptides. J Immunol Methods 88(2):149–161

    Article  CAS  PubMed  Google Scholar 

  10. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  11. Arbabi-Ghahroudi M, To R, Gaudette N, Hirama T, Ding W, MacKenzie R, Tanha J (2009) Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Protein Eng Des Sel 22(2):59–66

    Article  CAS  PubMed  Google Scholar 

  12. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this chapter was supported (100%) by the National Institute of General Medical Sciences of the National Institutes of Health under award number SC3GM112532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory L. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Toride King, M., Brooks, C.L. (2018). Epitope Mapping of Antibody-Antigen Interactions with X-Ray Crystallography. In: Rockberg, J., Nilvebrant, J. (eds) Epitope Mapping Protocols. Methods in Molecular Biology, vol 1785. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7841-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7841-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7839-7

  • Online ISBN: 978-1-4939-7841-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics