Advertisement

Mouse Models of Huntington’s Disease

  • Pamela P. Farshim
  • Gillian P. Bates
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

The identification of the mutation causing Huntington’s disease (HD) has led to the generation of a large number of mouse models. These models are used to further enhance our understanding of the mechanisms underlying the disease, as well as investigating and identifying therapeutic targets for this disorder. Here we review the transgenic, knock-in mice commonly used to model HD, as well those that have been generated to study specific disease mechanisms. We then provide a brief overview of the importance of standardizing the use of HD mice and describe brief protocols used for genotyping the mouse models used within the Bates Laboratory.

Keywords

Huntington’s disease Huntingtin Polyglutamine CAG repeat Mouse models Inbred strain Transgenic knock-in N-terminal fragment 

Notes

Acknowledgements

G.B. is supported by grants from the CHDI Foundation, the Medical Research Council and Wellcome Trust.

References

  1. 1.
    Bates G, Tabrizi S, Jones L (2014) Huntington’s disease, vol 64. Oxford University Press, Oxford, UKGoogle Scholar
  2. 2.
    Vonsattel J-P, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Macdonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingtons-disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  4. 4.
    Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP (2012) Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington’s disease transgenic mice. Brain Res Bull 88:104–112PubMedCrossRefGoogle Scholar
  5. 5.
    Brooks SP, Janghra N, Workman VL et al (2012) Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington’s disease transgenic mice. Brain Res Bull 88:94–103PubMedCrossRefGoogle Scholar
  6. 6.
    Carter RJ, Lione LA, Humby T et al (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257CrossRefPubMedGoogle Scholar
  7. 7.
    Cummings DM, Alaghband Y, Hickey MA et al (2012) A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington’s disease. J Neurophysiol 107:677–691PubMedCrossRefGoogle Scholar
  8. 8.
    Davies SW, Turmaine M, Cozens BA et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dragatsis I, Goldowitz D, Del Mar N et al (2009) CAG repeat lengths > or = 335 attenuate the phenotype in the R6/2 Huntington’s disease transgenic mouse. Neurobiol Dis 33:315–330PubMedCrossRefGoogle Scholar
  10. 10.
    Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Menalled L, El-Khodor BF, Patry M et al (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35:319–336PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Morton AJ, Glynn D, Leavens W et al (2009) Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 33:331–341PubMedCrossRefGoogle Scholar
  13. 13.
    Schilling G, Becher MW, Sharp AH et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407PubMedCrossRefGoogle Scholar
  14. 14.
    Laforet GA, Sapp E, Chase K et al (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J Neurosci 21:9112–9123PubMedCrossRefGoogle Scholar
  15. 15.
    Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Van Raamsdonk JM, Metzler M, Slow E et al (2007) Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiol Dis 26:189–200PubMedCrossRefGoogle Scholar
  17. 17.
    Southwell AL, Warby SC, Carroll JB et al (2013) A fully humanized transgenic mouse model of Huntington disease. Hum Mol Genet 22:18–34PubMedCrossRefGoogle Scholar
  18. 18.
    Southwell AL, Skotte NH, Villanueva EB et al (2017) A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles. Hum Mol Genet 26:1115–1132PubMedGoogle Scholar
  19. 19.
    Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Neueder A, Landles C, Ghosh R et al (2017) The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep 7:1370CrossRefGoogle Scholar
  21. 21.
    Mangiarini L, Sathasivam K, Mahal A et al (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat Genet 15:197–200PubMedCrossRefGoogle Scholar
  22. 22.
    Mielcarek M, Landles C, Weiss A et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11:e1001717PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Li H, Li S-H, Cheng AL et al (1999) Ultrastructural localization and progressive formation of neuropil aggregates in Huntington’s disease transgenic mice. Hum Mol Genet 8:1227–1236PubMedCrossRefGoogle Scholar
  24. 24.
    Sathasivam K, Lane A, Legleiter J et al (2010) Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington’s disease. Hum Mol Genet 19:65–78PubMedCrossRefGoogle Scholar
  25. 25.
    Stack EC, Kubilus JK, Smith K et al (2005) Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice. J Comp Neurol 490:354–370PubMedCrossRefGoogle Scholar
  26. 26.
    Lione LA, Carter RJ, Hunt MJ et al (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437PubMedCrossRefGoogle Scholar
  27. 27.
    Murphy KP, Carter RJ, Lione LA et al (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci 20:5115–5123PubMedCrossRefGoogle Scholar
  28. 28.
    Cepeda C, Hurst RS, Calvert CR et al (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci 23:961–969PubMedCrossRefGoogle Scholar
  29. 29.
    Rattray I, Smith E, Gale R et al (2013) Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD. PLoS One 8:e60012PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cha JH, Kosinski CM, Kerner JA et al (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci U S A 95:6480–6485PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Luthi-Carter R, Strand A, Peters NL et al (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9:1259–1271PubMedCrossRefGoogle Scholar
  32. 32.
    Benn CL, Fox H, Bates GP (2008) Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington’s disease. Mol Neurodegener 3:17PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bibb JA, Yan Z, Svenningsson P, Snyder GL et al (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A 97:6809–6814PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Menalled L, Zanjani H, MacKenzie L et al (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington’s disease. Exp Neurol 162:328–342PubMedCrossRefGoogle Scholar
  35. 35.
    Mielcarek M, Inuabasi L, Bondulich MK et al (2014) Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. PLoS Genet 10:e1004550PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ribchester RR, Thomson D, Wood NI et al (2004) Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington’s disease mutation. Eur J Neurosci 20:3092–3114PubMedCrossRefGoogle Scholar
  37. 37.
    Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pouladi MA, Stanek LM, Xie YY et al (2012) Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 21:2219–2232PubMedCrossRefGoogle Scholar
  39. 39.
    Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567PubMedCrossRefGoogle Scholar
  40. 40.
    Van Raamsdonk JM, Murphy Z, Slow EJ et al (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14:3823–3835PubMedCrossRefGoogle Scholar
  41. 41.
    Brooks S, Higgs G, Janghra N et al (2012) Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington’s disease transgenic mice. Brain Res Bull 88:113–120PubMedCrossRefGoogle Scholar
  42. 42.
    Brooks SP, Jones L, Dunnett SB (2012) Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington’s disease mouse line. Brain Res Bull 88:130–136PubMedCrossRefGoogle Scholar
  43. 43.
    Brooks SP, Janghra N, Higgs GV et al (2012) Selective cognitive impairment in the YAC128 Huntington’s disease mouse. Brain Res Bull 88:121–129PubMedCrossRefGoogle Scholar
  44. 44.
    Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP (2012) Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Res Bull 88:137–147PubMedCrossRefGoogle Scholar
  45. 45.
    Spampanato J, Gu X, Yang XW, Mody I (2008) Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience 157:606–620PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hult Lundh S, Nilsson N, Soylu R et al (2013) Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington’s disease. Hum Mol Genet 22:3485–3497PubMedCrossRefGoogle Scholar
  47. 47.
    Kennedy L, Evans E, Chen CM et al (2003) Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet 12:3359–3367PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pouladi MA, Xie Y, Skotte NH et al (2010) Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 19:1528–1538PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kudwa AE, Menalled LB, Oakeshott S et al (2013) Increased body weight of the BAC HD transgenic mouse model of Huntington’s disease accounts for some but not all of the observed HD-like motor deficits. PLoS Curr HD 5:0ab4f3645aff523c56ecc8ccbe41a198 Google Scholar
  50. 50.
    Menalled LB, Sison JD, Dragatsis I et al (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465:11–26PubMedCrossRefGoogle Scholar
  51. 51.
    Heikkinen T, Lehtimaki K, Vartiainen N et al (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One 7:e50717PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Menalled LB, Kudwa AE, Miller S et al (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One 7:e50717CrossRefGoogle Scholar
  53. 53.
    Wheeler VC, Auerbach W, White JK et al (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8:115–122PubMedCrossRefGoogle Scholar
  54. 54.
    Wheeler VC, White JK, Gutekunst CA et al (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9:503–513PubMedCrossRefGoogle Scholar
  55. 55.
    Trueman RC, Brooks SP, Jones L, Dunnett SB (2008) Time course of choice reaction time deficits in the Hdh(Q92) knock-in mouse model of Huntington’s disease in the operant Serial Implicit Learning Task (SILT). Behav Brain Res 189:317–324CrossRefPubMedGoogle Scholar
  56. 56.
    Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144PubMedCrossRefGoogle Scholar
  57. 57.
    Woodman B, Butler R, Landles C et al (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull 72:83–97PubMedCrossRefGoogle Scholar
  58. 58.
    Heng MY, Tallaksen-Greene SJ, Detloff PJ, Albin RL (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. J Neurosci 27:8989–8998PubMedCrossRefGoogle Scholar
  59. 59.
    Heng MY, Detloff PJ, Paulson HL, Albin RL (2010) Early alterations of autophagy in Huntington disease-like mice. Autophagy 6:1206–1208PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Menalled L, Lutz C, Ramboz S et al (2014) A field guide to working with mouse models of Huntington’s disease. Psychogenics Inc., The Jackson Laboratory, CHDI Foundation, New YorkGoogle Scholar
  61. 61.
    Brooks SP, Betteridge H, Trueman RC et al (2006) Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington’s disease. Brain Res Bull 69:452–457PubMedCrossRefGoogle Scholar
  62. 62.
    Rattray I, Smith EJ, Crum WR et al (2017) Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the HdhQ150/Q150 mouse model of Huntington’s disease. PLoS One 12:e0168556PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kuhn A, Goldstein DR, Hodges A et al (2007) Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16(15):1845–1861PubMedCrossRefGoogle Scholar
  64. 64.
    Mielcarek M, Toczek M, Smeets CJ et al (2015) HDAC4-myogenin axis as an important marker of HD-related skeletal muscle atrophy. PLoS Genet 11:e1005021PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bayram-Weston Z, Torres EM, Jones L et al (2012) Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington’s disease knock-in mouse. Brain Res Bull 88:189–198PubMedCrossRefGoogle Scholar
  66. 66.
    Tallaksen-Greene SJ, Crouse AB, Hunter JM et al (2005) Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knock-in mice. Neuroscience 131:843–852PubMedCrossRefGoogle Scholar
  67. 67.
    Lloret A, Dragileva E, Teed A et al (2006) Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington’s disease knock-in mice. Hum Mol Genet 15:2015–2024PubMedCrossRefGoogle Scholar
  68. 68.
    Levine MS, Klapstein GJ, Koppel A et al (1999) Enhanced sensitivity to N-methyl-d-aspartate receptor activation in transgenic and knock-in mouse models of Huntington’s disease. J Neurosci Res 58:515–532PubMedCrossRefGoogle Scholar
  69. 69.
    Peng Q, Wu B, Jiang M et al (2016) Characterization of behavioral, neuropathological, brain metabolic and key molecular changes in zQ175 knock-in mouse model of Huntington’s disease. PLoS One 11:e0148839PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bradford J, Shin JY, Roberts M et al (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106:22480–22485PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tebbenkamp AT, Swing D, Tessarollo L, Borchelt DR (2011) Premature death and neurologic abnormalities in transgenic mice expressing a mutant huntingtin exon-2 fragment. Hum Mol Genet 20:1633–1642PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tebbenkamp AT, Green C, Xu G et al (2011) Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet 20:2770–2782PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66PubMedCrossRefGoogle Scholar
  74. 74.
    Slow EJ, Graham RK, Osmand AP et al (2005) Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 102:11402–11407PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gu X, Li C, Wei W, Lo V et al (2005) Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46:433–444PubMedCrossRefGoogle Scholar
  76. 76.
    Gu X, Greiner ER, Mishra R et al (2009) Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64:828–840PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tanaka Y, Igarashi S, Nakamura M et al (2006) Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Neurobiol Dis 21:381–391PubMedCrossRefGoogle Scholar
  78. 78.
    Martin-Aparicio E, Yamamoto A, Hernandez F et al (2001) Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J Neurosci 21:8772–8781PubMedCrossRefGoogle Scholar
  79. 79.
    Gray M, Gu X, Shirasaki DI, Cepeda C et al (2008) Cortical control of striatal pathogenesis in the Cre/LoxP conditional BAC transgenic mouse model of Huntington’s disease (BACHD). Society for Neuroscience, Washington, DCGoogle Scholar
  80. 80.
    Gu X, Andre VM, Cepeda C et al (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kim SH, Thomas CA, Andre VM et al (2011) Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro 3:e00060PubMedCrossRefGoogle Scholar
  82. 82.
    Bradford J, Shin JY, Roberts M et al (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285:10653–10661PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66PubMedCrossRefGoogle Scholar
  84. 84.
    Schilling G, Savonenko AV, Klevytska A et al (2004) Nuclear-targeting of mutant huntingtin fragments produces Huntington’s disease-like phenotypes in transgenic mice. Hum Mol Genet 13:1599–1610PubMedCrossRefGoogle Scholar
  85. 85.
    Benn CL, Landles C, Li H et al (2005) Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington’s disease. Hum Mol Genet 14:3065–3078PubMedCrossRefGoogle Scholar
  86. 86.
    Cornett J, Cao F, Wang CE et al (2005) Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 37:198–204PubMedCrossRefGoogle Scholar
  87. 87.
    Gu X, Cantle JP, Greiner ER et al (2015) N17 modifies mutant Huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice. Neuron 85:726–741PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Graham RK, Deng Y, Slow EJ et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191PubMedCrossRefGoogle Scholar
  89. 89.
    Waldron-Roby E, Ratovitski T, Wang X (2012) Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci 32:183–193PubMedCrossRefGoogle Scholar
  90. 90.
    Gafni J, Papanikolaou T, Degiacomo F et al (2012) Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci 32:7454–7465PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Landles C, Weiss A, Franklin S et al (2012) Caspase-6 does not contribute to the proteolysis of mutant huntingtin in the HdhQ150 knock-in mouse model of Huntington’s disease. PLoS Curr HD 4:e4fd085bfc9973PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang CE, Tydlacka S, Orr AL et al (2008) Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 17:2738–2751PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    O’Brien R, DeGiacomo F, Holcomb J et al (2015) Integration-independent transgenic Huntington disease fragment mouse models reveal distinct phenotypes and life span in vivo. J Biol Chem 290:19287–19306PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zheng S, Clabough EB, Sarkar S et al (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 6:e1000838PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Andre EA, Braatz EM, Liu JP, Zeitlin SO (2017) Generation and characterization of knock-in mouse models expressing versions of huntingtin with either an N17 or a combined polyQ and proline-rich region deletion. J Huntingtons Dis 6:47–62PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Thompson LM, Aiken CT, Kaltenbach LS et al (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187:1083–1099PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ison JR, Allen PD, O’Neill WE (2007) Age-related hearing loss in C57BL/6J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex. J Assoc Res Otolaryngol 8:539–550PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Silva AJ, Simpson EM, Takahashi JS et al (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19:755–759CrossRefGoogle Scholar
  99. 99.
    Farley SJ, McKay BM, Disterhoft JF, Weiss C (2011) Reevaluating hippocampus-dependent learning in FVB/N mice. Behav Neurosci 125:871PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Menalled L, El-Khodor BF, Hornberger M et al (2012) Effect of the rd1 mutation on motor performance in R6/2 and wild type mice. PLoS Curr HD 4:RRN1303PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    van Dellen A, Blakemore C, Deacon R et al (2000) Delaying the onset of Huntington’s in mice. Nature 404:721–722PubMedCrossRefGoogle Scholar
  102. 102.
    van Praag H, Kempermann G, Gage FH (2000) Neural consequences of enviromental enrichment. Nat Rev Neurosci 1:191–198PubMedCrossRefGoogle Scholar
  103. 103.
    Hockly E, Cordery PM, Woodman B et al (2002) Environmental enrichment slows disease progression in R61/2 Huntington’s disease mice. Ann Neurol 51:235–242PubMedCrossRefGoogle Scholar
  104. 104.
    Skillings EA, Wood NI, Morton AJ (2014) Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington’s disease. Brain Behav 4:675–686PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Carter RJ, Hunt MJ, Morton AJ (2000) Environmental stimulation increases survival in mice transgenic for exon 1 of the Huntington’s disease gene. Mov Disord 15:925–937PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurodegenerative Disease, Huntington’s Disease Centre and Dementia Research InstituteUniversity College London Institute of NeurologyLondonUK

Personalised recommendations