Advertisement

Translating Antisense Technology into a Treatment for Huntington’s Disease

  • Roger M. Lane
  • Anne Smith
  • Tiffany Baumann
  • Marc Gleichmann
  • Dan Norris
  • C. Frank Bennett
  • Holly Kordasiewicz
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington’s disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.

State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.

Keywords

Antisense oligonucleotide (ASO) Gene silencing Huntington’s disease Huntingtin protein Huntingtin gene (HTTRibose nucleic acid (RNA) Translational neuroscience 

References

  1. 1.
    Becker RE, Greig NH (2014) A new regulatory road-map for Alzheimer’s disease drug development. Curr Alzheimer Res 11:215–220PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746PubMedCrossRefGoogle Scholar
  3. 3.
    Zielonka D, Mielcarek M, Landwehrmeyer GB (2015) Update on Huntington’s disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 21:169–178PubMedCrossRefGoogle Scholar
  4. 4.
    Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord 29:1434–1445PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Leavitt B, Kordasiewicz TS, Landwehrmeyer B et al (2016) Discovery and early clinical development of ISIS-HTTRx the first HTT-lowering drug to be tested in patients with Huntington’s disease. Neurology 86(16 Suppl):PL01.002Google Scholar
  6. 6.
    Pringsheim T, Wiltshire K, Day L et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27:1083–1091PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shoulson I, Young AB (2011) Milestones in Huntington disease. Mov Disord 26:11271133CrossRefGoogle Scholar
  8. 8.
    Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  10. 10.
    Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Squitieri F, Jankovic J (2012) Huntington’s disease: how intermediate are intermediate repeat lengths? Mov Disord 27:1714–1717PubMedCrossRefGoogle Scholar
  12. 12.
    Seong IS, Ivanova E, Lee JM et al (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–2880PubMedCrossRefGoogle Scholar
  13. 13.
    Huntington G (1872) On chorea. Med Surg Reporter 26:217–321Google Scholar
  14. 14.
    Folstein S (1989) The psychopathology of Huntington’s disease. J Nerv Ment Dis 177:645CrossRefGoogle Scholar
  15. 15.
    The Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRefGoogle Scholar
  16. 16.
    Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216PubMedCrossRefGoogle Scholar
  18. 18.
    Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967PubMedCrossRefGoogle Scholar
  19. 19.
    Papoutsi M, Labuschagne I, Tabrizi SJ, Stout JC (2014) The cognitive burden in Huntington’s disease: pathology phenotype and mechanisms of compensation. Mov Disord 29:673–683PubMedCrossRefGoogle Scholar
  20. 20.
    Paulsen JS, Smith MM, Long JD (2013) Cognitive decline in prodromal Huntington Disease: implications for clinical trials. J Neurol Neurosurg Psychiatry 84:1233–1239PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    FDA Public Meeting on Patient-Focused Drug Development for Huntington’s and Parkinson’s Diseases (2015) September 22 (2015) January 22 (2017). Available from: http://www.fda.gov/Drugs/NewsEvents/ucm451807.htm
  22. 22.
    Hogarth P, Kayson E, Kieburtz K et al (2005) Interrater agreement in the assessment of motor manifestations of Huntington’s disease. Mov Disord 20:293–297PubMedCrossRefGoogle Scholar
  23. 23.
    Reilmann R, Leavitt BR, Ross CA (2014) Diagnostic criteria for Huntington’s disease based on natural history. Mov Disord 29:1335–1341PubMedCrossRefGoogle Scholar
  24. 24.
    Sullenger BA, Nair S (2016) From the RNA world to the clinic. Science 352:1417–1420PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293PubMedCrossRefGoogle Scholar
  26. 26.
    Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51PubMedCrossRefGoogle Scholar
  27. 27.
    Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4:35–50PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pandey SK, Wheeler TM, Justice SL et al (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:329–340PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rigo F, Chun SJ, Norris DA et al (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350:46–55PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schoch KM, DeVos SL, Miller RL et al (2016) Increased 4r-tau induces pathological changes in a human-tau mouse model. Neuron 90:941–947PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wan WB, Migawa MT, Vasquez G et al (2014) Synthesis biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Res 42:13456–13468PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Henry ST, Kim TW, Kramer-Stickland K et al (2008) Toxicologic properties of 2′-o-methoxyethyl chimeric antisense inhibitors in animals and man. In: Crooke ST (ed) Antisense drug technology. Taylor & Francis Group, Boca Raton, pp 327–364Google Scholar
  33. 33.
    Viney NJ, van Capelleveen JC, Geary RS et al (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised double-blind placebo-controlled dose-ranging trials. Lancet 388:2239–2253PubMedCrossRefGoogle Scholar
  34. 34.
    Prakash TP, Graham MJ, Yu J et al (2014) Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 42:8796–8807PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hache M, Swoboda KJ, Sethna N et al (2016) Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child Neurol 31:899–906PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Broaddus WC, Prabhu SS, Wu-Pong S et al (2000) Strategies for the design and delivery of antisense oligonucleotides in central nervous system. Methods Enzymol 314:121–135PubMedCrossRefGoogle Scholar
  37. 37.
    Papisov MI, Belov VV, Gannon KS (2013) Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm 10:1522–1532PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hadaczek P, Yamashita Y, Mirek H et al (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14:69–78PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kordasiewicz HB, Stanek LM, Wancewicz EV et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1 randomised first-in-man study. Lancet Neurol 12:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86:890–897PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Spinraza (R) [Package Insert] Biogen Inc C MA; December (2016). Available from: wwwaccessdatafdagov/drugsatfda_docs/label/(2016)/209531lblpdf. Cited 15 Jan 2017Google Scholar
  44. 44.
    Stanek LM, Yang W, Angus S et al (2013) Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J Huntingtons Dis 2:217–228PubMedGoogle Scholar
  45. 45.
    Kuemmerle S, Gutekunst CA, Klein AM et al (1999) Huntington aggregates may not predict neuronal death in Huntington’s disease. Ann Neurol 46:842–849PubMedCrossRefGoogle Scholar
  46. 46.
    Moumne L, Betuing S, Caboche J (2013) Multiple aspects of gene dysregulation in Huntington’s disease. Front Neurol 4:127PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ross CA, Pantelyat A, Kogan J, Brandt J (2014) Determinants of functional disability in Huntington’s disease: Role of cognitive and motor dysfunction. Mov Disord 29:1351–1358PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Banez-Coronel M, Porta S, Kagerbauer B et al (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8:e1002481PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930PubMedCrossRefGoogle Scholar
  50. 50.
    Tsoi H, Chan HY (2013) Expression of expanded CAG transcripts triggers nucleolar stress in Huntington’s disease. Cerebellum 12:310–312PubMedCrossRefGoogle Scholar
  51. 51.
    Benraiss A, Wang S, Herrlinger S et al (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11758PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555PubMedCrossRefGoogle Scholar
  53. 53.
    Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Estrada-Sánchez AM, Rebec GV (2013) Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Halliday GM, McRitchie DA, Macdonald V et al (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672PubMedCrossRefGoogle Scholar
  56. 56.
    Thu DC, Oorschot DE, Tippett LJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094–1110CrossRefPubMedGoogle Scholar
  57. 57.
    Wang N, Gray M, Lu XH et al (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 20:536–541PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gu X, André VM, Cepeda C et al (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rodriguez-Lebron E, Denovan-Wright EM, Nash K et al (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12:618–633PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang H, Lim PJ, Yin C et al (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington’s disease by ubiquitin. Hum Mol Genet 15:1025–1041PubMedCrossRefGoogle Scholar
  61. 61.
    Boudreau RL, McBride JL, Martins I et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Diaz-Hernandez M, Torres-Peraza J, Salvatori-Abarca A et al (2005) Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a conditional mouse model of Huntington’s disease. J Neurosci 25:9773–9781PubMedCrossRefGoogle Scholar
  65. 65.
    Hu J, Matsui M, Gagnon KT et al (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27:478–484PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pfister EL, Kennington L, Straubhaar J et al (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 19:774–778PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hu J, Liu J, Corey DR (2010) Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol 17:1183–1188PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Southwell AL, Skotte NH, Kordasiewicz HB et al (2014) In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther 22:2093–2106PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Molero AE, Arteaga-Bracho EE, Chen CH et al (2016) Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci U S A 113:5736–5741PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Barbaro BA, Lukacsovich T, Agrawal N et al (2014) Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet 24:913–925PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cheng AJ, Wang JC, Van Dyke MW (1998) Self-association of G-rich oligodeoxyribonucleotides under conditions promoting purine-motif triplex formation. Antisense Nucleic Acid Drug Dev 8:215–225PubMedCrossRefGoogle Scholar
  73. 73.
    Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760PubMedCrossRefGoogle Scholar
  74. 74.
    Barnes G, Duyao MP, Ambrose CM et al (1994) Mouse Huntington’s disease gene homolog. Somat Cell Mol Genet 20:87–97CrossRefPubMedGoogle Scholar
  75. 75.
    Chang R, Liu X, Li S, Li XJ (2015) Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy. Drug Des Devel Ther 9:2179–2188PubMedPubMedCentralGoogle Scholar
  76. 76.
    Carroll JB, Warby SC, Southwell AL et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19:2178–2185PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rigo F, Seth PP, Bennett CF (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv Exp Med Biol 825:303–352PubMedCrossRefGoogle Scholar
  79. 79.
    Van Dam D, De Deyn PP (2017) Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 12:187–200PubMedCrossRefGoogle Scholar
  80. 80.
    Kallman MJ (2015) Preclinical abuse potential assessment. Handb Exp Pharmacol 229:115–130PubMedCrossRefGoogle Scholar
  81. 81.
    Henry SP, Geary RS, Yu R et al (2001) Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Investig Drugs 2:1444–1449PubMedGoogle Scholar
  82. 82.
    Yu R, Warren MS, Watanabe TZ et al (2016) Lack of interactions between an antisense oligonucleotide with 2′-O-(2-methoxyethyl) modifications and major drug transporters. Nucleic Acid Ther 26:111–117PubMedCrossRefGoogle Scholar
  83. 83.
    Senn JJ, Burel S, Henry SP (2005) Non-CpG-containing antisense 2′-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther 314:972–979PubMedCrossRefGoogle Scholar
  84. 84.
    Henry SP, Jagels MA, Hugli TE et al (2014) Mechanism of alternative complement pathway dysregulation by a phosphorothioate oligonucleotide in monkey and human serum. Nucleic Acid Ther 24:326–335PubMedCrossRefGoogle Scholar
  85. 85.
    Byrne LM, Wild EJ (2016) Cerebrospinal fluid biomarkers for Huntington’s disease. J Huntingtons Dis 5:1–13PubMedCrossRefGoogle Scholar
  86. 86.
    Geary RS, Yu RZ, Watanabe T et al (2003) Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428PubMedCrossRefGoogle Scholar
  87. 87.
    Yu RZ, Kim TW, Hong A et al (2007) Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide ISIS 301012 targeting human apolipoprotein B-100. Drug Metab Dispos 35:460–468PubMedCrossRefGoogle Scholar
  88. 88.
    Yu RZ, Grundy JS, Henry SP et al (2015) Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2′-o-(2-methoxyethyl) modifications. Mol Ther Nucleic Acids 4:e218PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    European Medicines Agency (2016) Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products in EMEA/CHMP/SWP/28367/07 Rev 1 EMACfMPfHU (CHMP) EditorGoogle Scholar
  90. 90.
    Horak FB, Mancini M, Carlson-Kuhta P et al (2016) Balance and gait represent independent domains of mobility in Parkinson disease. Phys Ther 96:1364–1371PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Villar R, Beltrame T, Hughson RL (2015) Validation of the Hexoskin wearable vest during lying sitting standing and walking activities. Appl Physiol Nutr Metab 40:1019–1024PubMedCrossRefGoogle Scholar
  92. 92.
    Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21(3–4):79–96PubMedGoogle Scholar
  93. 93.
    Wild EJ, Boborwsky B, HDClarity investigators (2016) A new multi-site cerebrospinal fluid collection initiative to facilitate therapeutic development for Huntington disease. In: 11th annual CHDI HD therapeutics conference, Palm Springs, CAGoogle Scholar
  94. 94.
    Schrattenholz A, Groebe K (2007) What does it need to be a biomarker? Relationships between resolution differential quantification and statistical validation of protein surrogate biomarkers. Electrophoresis 28:1970–1979PubMedCrossRefGoogle Scholar
  95. 95.
    Wild EJ, Boggio R, Langbehn D et al (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest 125:1979–1986PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Constantinescu R, Romer M, Zetterberg H et al (2009) Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 15:245–248PubMedCrossRefGoogle Scholar
  97. 97.
    Constantinescu R, Romer M, Zetterberg H et al (2011) Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 17:714–715PubMedCrossRefGoogle Scholar
  98. 98.
    Rodrigues FB, Byrne L, McColgan P et al (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mattsson N, Insel PS, Palmqvist S et al (2016) Cerebrospinal fluid tau neurogranin and neurofilament light in Alzheimer’s disease. EMBO Mol Med 8:1184–1196PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Plotkin JL, Surmeier DJ (2015) Corticostriatal synaptic adaptations in Huntington’s disease. Curr Opin Neurobiol 33:53–62PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rodrigues FB, Byrne LM, McColgan P et al (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11:e0163479PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Paulsen JS, Long JD, Johnson HJ et al (2014) Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Front Aging Neurosci 6:78PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    van Duijn E, Craufurd D, Hubers AA et al (2014) Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry 85:1411–1418PubMedCrossRefGoogle Scholar
  104. 104.
    Hobbs NZ, Henley NZ, Ridgway GR et al (2012) Evaluation of multi-modal multi-site neuroimaging measures in Huntington’s disease: baseline results from the PADDINGTON study. Neuroimage Clin 2:204–211PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tabrizi SJ, Reilmann R, Roos RA et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hobbs NZ, Henley SM, Ridgeway GE et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81:756–763PubMedCrossRefGoogle Scholar
  107. 107.
    Eidelberg D (2009) Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 32:548–557PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Klöppel S, Gregory S, Scheller E et al (2015) Compensation in preclinical Huntington’s disease: evidence from the Track-on HD study. EBioMedicine 2:1420–1429PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sasinowski FJ (2011) Quantum of effectiveness evidence in FDA’s approval of orphan drugs: cataloguing FDA’s flexibility in regulating therapies for persons with rare disorders. National Organization for Rare Disorders:1–27Google Scholar
  110. 110.
    FDA (2014) CFR-21 340510: Accelerated approval of new drugs for serious or life-threatening illnessesGoogle Scholar
  111. 111.
    Stout JC, Queller S, Baker KN et al (2014) HD-CAB: a cognitive assessment battery for clinical trials in Huntington’s disease 123. Mov Disord 29:1281–1288PubMedCrossRefGoogle Scholar
  112. 112.
    Sampaio C, Borowsky B, Reilmann R (2014) Clinical trials in Huntington’s disease: interventions in early clinical development and newer methodological approaches. Mov Disord 29:1419–1428CrossRefPubMedGoogle Scholar
  113. 113.
    Little TJ, Colegrave N (2016) Caging and uncaging genetics. PLoS Biol 14:e1002525PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sittig LJ, Carbonetto P, Engel KA et al (2016) Genetic background limits generalizability of genotype-phenotype relationships. Neuron 91:1253–1259PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rubinsztein DC, Orr HT (2016) Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?: There may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. Bioessays 38:977–980PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roger M. Lane
    • 1
  • Anne Smith
    • 1
  • Tiffany Baumann
    • 1
  • Marc Gleichmann
    • 1
  • Dan Norris
    • 1
  • C. Frank Bennett
    • 1
  • Holly Kordasiewicz
    • 1
  1. 1.Ionis PharmaceuticalsCarlsbadUSA

Personalised recommendations