Advertisement

Guidelines for Sample Normalization to Minimize Batch Variation for Large-Scale Metabolic Profiling of Plant Natural Genetic Variance

  • Saleh AlseekhEmail author
  • Si Wu
  • Yariv Brotman
  • Alisdair R. Fernie
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1778)

Abstract

Recent methodological advances in both liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS) have facilitated the profiling highly complex mixtures of primary and secondary metabolites in order to investigate a diverse range of biological questions. These techniques usually face a large number of potential sources of technical and biological variation. In this chapter we describe guidelines and normalization procedures to reduce the analytical variation, which are essential for the high-throughput evaluation of metabolic variance used in broad genetic populations which commonly entail the evaluation of hundreds or thousands of samples. This chapter specifically deals with handling of large-scale plant samples for metabolomics analysis of quantitative trait loci (mQTL) in order to reduce analytical error as well as batch-to-batch variation.

Key words

Large-scale metabolomics Batch normalization Variation Natural genetic variation QTL mapping LC-MS GC-MS 

Notes

Acknowledgments

This wok was in part supported by the PlantaSYST project by the European Union’s Horizon 2020 Research and Innovation Programme (SGA-CSA Number 664621 and Number 739582 under FPA Number 664620).

References

  1. 1.
    Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816CrossRefPubMedGoogle Scholar
  2. 2.
    Bijlsma S, Bobeldijk I, Verheij ER et al (2006) Large-scale human metabolomics studies: a strategy for data (pre-)processing and validation. Anal Chem 78:567–574CrossRefGoogle Scholar
  3. 3.
    Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454CrossRefPubMedGoogle Scholar
  4. 4.
    Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRefPubMedGoogle Scholar
  5. 5.
    Fu J, Keurentjes JJ, Bouwmeester H et al (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genetics 41:166–167CrossRefPubMedGoogle Scholar
  6. 6.
    Rowe HC, Hansen BG, Halkier BA et al (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wentzell AM, Rowe HC, Hansen BG et al (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3:1687–1701CrossRefPubMedGoogle Scholar
  8. 8.
    Biais B, Bernillon S, Deborde C et al (2012) Precautions for harvest, sampling, storage, and transport of crop plant metabolomics samples. In: Hardy N, Hall R (eds) Plant Metabolomics, Methods in Molecular Biology (Methods and Protocols), vol 860. Humana Press, New York, pp 51–63CrossRefGoogle Scholar
  9. 9.
    Gibon Y, Rolin D (2012) Aspects of experimental design for plant metabolomics experiments and guidelines for growth of plant material. Methods Mol Biol 860:13–30CrossRefPubMedGoogle Scholar
  10. 10.
    Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics 15:8–93Google Scholar
  11. 11.
    van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH (2009) Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J Proteome Res 8:5132–5141CrossRefPubMedGoogle Scholar
  12. 12.
    van der Greef J, Martin S, Juhasz P et al (2007) The art and practice of systems biology in medicine: Mapping patterns of relationships. J Proteome Res 6:1540–1559CrossRefPubMedGoogle Scholar
  13. 13.
    Dunn WB, Broadhurst D, Brown M et al (2008) Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-orbitrap mass spectrometry system. J Chromatogr B Anal Technol Biomed Life Sci 871:288–298CrossRefGoogle Scholar
  14. 14.
    Chen MJ, Rao RP, Zhang Y et al (2014) A modified data normalization method for GC-MS-based metabolomics to minimize batch variation. Spring 3:439CrossRefGoogle Scholar
  15. 15.
    Fiehn O, Kopka J, Dörmann P et al (2001) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRefGoogle Scholar
  16. 16.
    Lai Z, Fiehn O (2016) Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrom Rev 9999:1–13Google Scholar
  17. 17.
    Lisec J, Schauer N, Kopka J et al (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protocols 1:387–396CrossRefPubMedGoogle Scholar
  18. 18.
    Joseph B, Corwin JA, Kliebenstein DJ (2015) Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense. PLoS Genet 11:e1004779CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boyes DC, Zayed AM, Ascenzi R et al (2001) Growth stage-based phenotypic analysis of arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brukhin V, Hernould M, Gonzalez N et al (2003) Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Reprod 15:311–320Google Scholar
  21. 21.
    Markert B (1995) Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices. Science Total Environ 176:45–61CrossRefGoogle Scholar
  22. 22.
    Osorio S, Do PT, Fernie AR (2012) Profiling primary metabolites of tomato fruit with gas chromatography-mass spectrometry. In: Hardy N, Hall R (eds) Plant Metabolomics, Methods in Molecular Biology (Methods and Protocols), vol 860. Humana Press, New York, pp 101–109CrossRefGoogle Scholar
  23. 23.
    Kopka J, Fernie A, Weckwerth W et al (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Allwood JW, De Vos RC, Moing A et al (2011) Plant metabolomics and its potential for systems biology research background concepts, technology, and methodology. In: Jameson D, Verma M, Westerhoff HV (eds) Methods in Enzymology, vol 500. Academic Press, Amsterdam, pp 299–33623Google Scholar
  25. 25.
    Allwood JW, Clarke A, Goodacre R, Mur LA (2010) Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Phytochemistry 71:590–597CrossRefPubMedGoogle Scholar
  26. 26.
    Karpievitch YV, Nikolic SB, Wilson R et al (2014) Metabolomics data normalization with EigenMS. PLoS One 9:e116221CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sehgal D, Singh R, Rajpal VR (2016) Quantitative trait loci mapping in plants: concepts and approaches. In: Rajpal V, Rao S, Raina S (eds) Molecular breeding for sustainable crop improvement. sustainable development and biodiversity, vol 11. Springer, ChamGoogle Scholar
  28. 28.
    Strehmel N, Hummel J, Erban A et al (2008) Retention index thresholds for compound matching in GC-MS metabolite profiling. J Chromatogr B AnalTechnol Biomed Life Sci 871:182–190CrossRefGoogle Scholar
  29. 29.
    Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 30:44–52Google Scholar
  30. 30.
    Tanksley SD (1993) Mapping polygenes. Ann Rev Genetics 27:205–233CrossRefGoogle Scholar
  31. 31.
    Collard BCY, Pang ECK, Taylor PWJ (2003) Selection of wild Cicer accessions for the generation of mapping populations segregating for resistance to ascochyta blight. Euphytica 130:1–9CrossRefGoogle Scholar
  32. 32.
    Soltis NE, Kliebenstein DJ (2015) Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, and evolutionary and mechanistic insights. Plant Physiol 169:1456–1468PubMedPubMedCentralGoogle Scholar
  33. 33.
    Han F, Ullrich SE, Kleinhofs A et al (1997) Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theoretical Applied Genetics 95:903–910CrossRefGoogle Scholar
  34. 34.
    Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596CrossRefPubMedGoogle Scholar
  35. 35.
    von Korff M, WJ LK, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp spontaneum) as donor. Theoretical Applied Genetics 109:1736–1745CrossRefGoogle Scholar
  36. 36.
    Balding DJ, Bishop M, Cannings C, Jansen RC (2004) Quantitative Trait Loci in Inbred Lines. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of Statistical Genetics, 3rd edn. John Wiley & Sons Ltd, Chichester, UKCrossRefGoogle Scholar
  37. 37.
    Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L-esculentum genetic background: A tool for gene mapping and gene discovery. Genome 43:803–813CrossRefPubMedGoogle Scholar
  38. 38.
    Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theoretical Applied Genetics 109:394–401CrossRefPubMedGoogle Scholar
  39. 39.
    Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theoretical Applied Genetics 113:563–565CrossRefGoogle Scholar
  40. 40.
    Jamann TM, Balint-Kurti PJ, Holland JB (2015) QTL mapping using high-throughput sequencing. In: Alonso J, Stepanova A (eds) Plant functional genomics, Methods in molecular biology, vol 1284. Humana Press, New YorkGoogle Scholar
  41. 41.
    Platt A, Vilhjalmsson BJ, Nordborg M (2010) Conditions under which genome-wide association studies will be positively misleading. Genetics 186:1045–1052CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saleh Alseekh
    • 1
    • 2
    Email author
  • Si Wu
    • 1
    • 3
  • Yariv Brotman
    • 1
    • 3
  • Alisdair R. Fernie
    • 1
  1. 1.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
  2. 2.Center of Plant System Biology and BiotechnologyPlovdivBulgaria
  3. 3.Department of Life SciencesBen-Gurion University of the NegevBeershebaIsrael

Personalised recommendations