Laser Ablation Electrospray Ionization-Mass Spectrometry Imaging (LAESI-MS) for Spatially Resolved Plant Metabolomics

  • Desalegn W. Etalo
  • Carmen Díez-Simón
  • Ric C. H. de Vos
  • Robert D. HallEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1778)


There is increasing demand to bring the level of metabolomics analyses down to the tissue or cell level. Significant progress has been made involving the use of in situ metabolomics imaging techniques where no tissue collection or extraction is needed prior to analysis. In this chapter we describe a relatively new method which is simple and easy to use. No ectopic matrix or vacuum is required, and analyses are performed with living plant materials directly from (or even still attached to) the plant. Although relatively straightforward, there are still a few caveats as regards this method which are described at the end of the chapter.

Key words

LAESI Laser ablation ESI-MS In situ metabolomics Spatial resolution Plant metabolomics Imaging 


  1. 1.
    Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468CrossRefPubMedGoogle Scholar
  2. 2.
    Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nature Protoc 5:536–549CrossRefGoogle Scholar
  3. 3.
    Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A 105:18126–18131CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li H, Ha E, Donaldson RP et al (2015) Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Anal Chem 87:9829–9837CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dean SN, Walsh C, Goodman H, van Hoek ML (2015) Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry. Biofouling: J Bioadhesion Biofilm Res 31:151–161CrossRefGoogle Scholar
  6. 6.
    Bjarnholt N, Li B, D’Alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites-principles and possibilities. Nat Prod Rep 31:818–837CrossRefPubMedGoogle Scholar
  7. 7.
    El-Baba TJ, Lutomski CA, Wang BX et al (2014) Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Anal Bioanal Chem 406:4053–4061CrossRefPubMedGoogle Scholar
  8. 8.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833CrossRefPubMedGoogle Scholar
  9. 9.
    Ifa DR, Wu C, Ouyang Z, Cooks RG (2010) Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135:669–681CrossRefPubMedGoogle Scholar
  10. 10.
    Berisha A, Dold S, Guenther S et al (2014) A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods. Rapid Comm Mass Spectrom 28:1779–1791CrossRefGoogle Scholar
  11. 11.
    Li Z, Bohn PW, Sweedler JV (2010) Comparison of sample pre-treatments for laser desorption ionization and secondary ion mass spectrometry imaging of Miscanthus × giganteus. BioresTechnol 101:5578–5585Google Scholar
  12. 12.
    Saito K, Watanabe Y, Shirakawa M et al (2012) Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant J 69:542–552CrossRefPubMedGoogle Scholar
  13. 13.
    Sarsby J, Towers MW, Stain C et al (2012) Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques. Phytochemistry 77:110–118CrossRefPubMedGoogle Scholar
  14. 14.
    Gemperline E, Li L (2014) MALDI-mass spectrometric imaging for the investigation of metabolites in Medicago truncatula root nodules. J Vis Exp 85:e51434Google Scholar
  15. 15.
    Yoshimura Y, Zaima N, Moriyama T, Kawamura Y (2012) Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One 7:e31285CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hölscher D, Shroff R, Knop K et al (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J 60:907–918CrossRefPubMedGoogle Scholar
  17. 17.
    Li Y, Shirestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79:523–532CrossRefPubMedGoogle Scholar
  18. 18.
    Li B, Knudsen C, Hansen NK et al (2013) Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant J 74:1059–1071CrossRefPubMedGoogle Scholar
  19. 19.
    Müller T, Oradu S, Ifa DR et al (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83:5754–5761CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106CrossRefPubMedGoogle Scholar
  21. 21.
    Bartels B, Svatos A (2015) Spatially resolved in vitro plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MS and LAESI. Front Plant Sci 6:471CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shrestha B, Patt JM, Vertes A (2011) In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry. Anal Chem 83:2947–2955CrossRefPubMedGoogle Scholar
  23. 23.
    Nemes P, Barton AA, Li Y, Vertes A (2008) Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal Chem 80:4575–4582CrossRefPubMedGoogle Scholar
  24. 24.
    Nemes P, Barton AA, Vertes A (2009) Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem 81:6668–6675CrossRefPubMedGoogle Scholar
  25. 25.
    Nielen MWF, van Beek TA (2014) Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 406:6805–6815CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Etalo D, de Vos RC, Joosten J, Hall RD (2015) Spatially-resolved plant metabolomics: some potentials and limitations of Laser-Ablation Electrospray Ionization (LAESI) mass spectrometry metabolite imaging. Plant Physiol 169:1424–1435PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Desalegn W. Etalo
    • 1
  • Carmen Díez-Simón
    • 2
  • Ric C. H. de Vos
    • 3
    • 4
  • Robert D. Hall
    • 2
    • 3
    • 4
    Email author
  1. 1.Netherlands Institute of EcologyWageningenThe Netherlands
  2. 2.Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
  3. 3.Business Unit BioscienceWageningen University and ResearchWageningenThe Netherlands
  4. 4.Netherlands Metabolomics CentreLeidenThe Netherlands

Personalised recommendations