Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels

  • Danting Huang
  • Benjamin C. Hudson
  • Yuan Gao
  • Evan K. Roberts
  • Anant K. ParavastuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


For the structural characterization methods discussed here, information on molecular conformation and intermolecular organization within nanostructured peptide assemblies is discerned through analysis of solid-state NMR spectral features. This chapter reviews general NMR methodologies, requirements for sample preparation, and specific descriptions of key experiments. An attempt is made to explain choices of solid-state NMR experiments and interpretation of results in a way that is approachable to a nonspecialist. Measurements are designed to determine precise NMR peak positions and line widths, which are correlated with secondary structures, and probe nuclear spin–spin interactions that report on three-dimensional organization of atoms. The formulation of molecular structural models requires rationalization of data sets obtained from multiple NMR experiments on samples with carefully chosen 13C and 15N isotopic labels. The information content of solid-state NMR data has been illustrated mostly through the use of simulated data sets and references to recent structural work on amyloid fibril-forming peptides and designer self-assembling peptides.

Key words

Solid-state NMR Self-assembling peptide Selective isotopic labeling Dipolar redoubling Two-dimensional NMR 



This work was supported by the National Institute on Aging of the National Institutes of Health (award number R01AG045703). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A portion of the work is financially supported by the National Science Foundation (DMR-105221 to AKP) and the startup at Georgia Institute of Technology. The authors also gratefully acknowledge Terrone L. Rosenberry, Ankita Gupta, and Smaranda Birlea for the proofreading of this manuscript.


  1. 1.
    Nelson MT, Humphrey W, Gursoy A et al (1996) NAMD: a parallel, object oriented molecular dynamics program. Int J High Perform Comput Appl 10(4):251–268Google Scholar
  2. 2.
    Case DA, Cheatham TE, Darden T et al (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schwieters CD, Kuszewski JJ, Tjandra N et al (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73PubMedCrossRefGoogle Scholar
  4. 4.
    Paravastu AK, Leapman RD, Yau WM et al (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 105(47):18349–18354PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cormier AR, Pang X, Zimmerman MI et al (2013) Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9):7562–7572PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Huang D, Zimmerman MI, Martin PK et al (2015) Antiparallel beta-sheet structure within the C-terminal region of 42-residue Alzheimer’s amyloid-beta peptides when they form 150-kDa oligomers. J Mol Biol 427(13):2319–2328PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nagy-Smith K, Moore E, Schneider J et al (2015) Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proc Natl Acad Sci U S A 112(32):9816–9821PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268CrossRefGoogle Scholar
  9. 9.
    Arimon M, Diez-Perez I, Kogan MJ et al (2005) Fine structure study of Aβ1-42 fibrillogenesis with atomic force microscopy. FASEB J 19(10):1344–1346PubMedCrossRefGoogle Scholar
  10. 10.
    Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3(2):89–93PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Petkova AT, Leapman RD, Guo ZH et al (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307(5707):262–265CrossRefPubMedGoogle Scholar
  12. 12.
    Cardoso I, Goldsbury CS, Muller SA et al (2002) Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J Mol Biol 317(5):683–695PubMedCrossRefGoogle Scholar
  13. 13.
    Schmidt M, Sachse C, Richter W et al (2009) Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A 106(47):19813–19818PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goldsbury C, Baxa U, Simon MN et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173(1):1–13PubMedCrossRefGoogle Scholar
  15. 15.
    Chen B, Thurber KR, Shewmaker F et al (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci U S A 106(34):14339–14344PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wagner DE, Phillips CL, Ali WM et al (2005) Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc Natl Acad Sci U S A 102(36):12656–12661PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Woolfson DN, Gribbon C, Channon KJ et al (2008) MagicWand: a single, designed peptide that assembles to stable, ordered alpha-helical fibers. Biochemistry 47(39):10365–10371PubMedCrossRefGoogle Scholar
  18. 18.
    Cerf E, Sarroukh R, Tamamizu-Kato S et al (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423PubMedCrossRefGoogle Scholar
  19. 19.
    Sarroukh R, Goormaghtigh E, Ruysschaert J-M et al (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. BBA-Biomembranes 1828(10):2328–2338PubMedCrossRefGoogle Scholar
  20. 20.
    Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. TrAC Trends Anal Chem 18(4):236–244CrossRefGoogle Scholar
  21. 21.
    Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Saeed SM, Fine G (1967) Thioflavin-T for amyloid detection. Am J Clin Pathol 47(5):588–593PubMedCrossRefGoogle Scholar
  25. 25.
    Wolfe LS, Calabrese MF, Nath A et al (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci 107(39):16863–16868PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Khurana R, Coleman C, Ionescu-Zanetti C et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238PubMedCrossRefGoogle Scholar
  27. 27.
    Linke RP (2006) Congo red staining of amyloid: improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In: Uversky VN, Fink AL (eds) Protein misfolding, aggregation, and conformational diseases: part a: protein aggregation and conformational diseases. Springer US, Boston, pp 239–276CrossRefGoogle Scholar
  28. 28.
    Schütz AK, Soragni A, Hornemann S et al (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed 50(26):5956–5960CrossRefGoogle Scholar
  29. 29.
    Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37(8):1273–1281PubMedCrossRefGoogle Scholar
  30. 30.
    Jimenez JL, Guijarro JL, Orlova E et al (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18(4):815–821PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhang R, Hu X, Khant H et al (2009) Interprotofilament interactions between Alzheimer’s Abeta1-42 peptides in amyloid fibrils revealed by cryoEM. Proc Natl Acad Sci U S A 106(12):4653–4658PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yucel T, Micklitsch CM, Schneider JP et al (2008) Direct observation of early-time hydrogelation in β-hairpin peptide self-assembly. Macromolecules 41(15):5763–5772PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    McDonald M, Box H, Bian W et al (2012) Fiber diffraction data indicate a hollow core for the Alzheimer’s a beta 3-fold symmetric fibril. J Mol Biol 423(3):454–461PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins and peptides using fibre diffraction. Chem Soc Rev 39(9):3445–3453PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739CrossRefPubMedGoogle Scholar
  36. 36.
    Diaz-Avalos R, Long C, Fontano E et al (2003) Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. J Mol Biol 330(5):1165–1175PubMedCrossRefGoogle Scholar
  37. 37.
    Stroud JC, Liu C, Teng PK et al (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc Natl Acad Sci U S A 109(20):7717–7722PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Whittemore NA, Mishra R, Kheterpal I et al (2005) Hydrogen-deuterium (H/D) exchange mapping of a ss(1-40) amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy. Biochemistry 44(11):4434–4441PubMedCrossRefGoogle Scholar
  39. 39.
    Vilar M, Wang L, Riek R (2012) Structural studies of amyloids by quenched hydrogen–deuterium exchange by NMR. Amyloid Proteins Methods Protoc 849:185–198CrossRefGoogle Scholar
  40. 40.
    Gu L, Liu C, Stroud JC et al (2014) Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. J Biol Chem 289(39):27300–27313PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Karyagina I, Becker S, Giller K et al (2011) Electron paramagnetic resonance spectroscopy measures the distance between the external β-strands of folded α-synuclein in amyloid fibrils. Biophys J 101(1):L1–L3PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gu L, Liu C, Guo Z (2013) Structural insights into Aβ 42 oligomers using site-directed spin labeling. J Biol Chem 288(26):18673–18683PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev. Biophys 41(3–4):265–297PubMedCrossRefGoogle Scholar
  44. 44.
    Torok M, Milton S, Kayed R et al (2002) Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277(43):40810–40815PubMedCrossRefGoogle Scholar
  45. 45.
    Frare E, Mossuto MF, de Laureto PP et al (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361(3):551–561PubMedCrossRefGoogle Scholar
  46. 46.
    Kheterpal I, Williams A, Murphy C et al (2001) Structural features of the Aβ amyloid fibril elucidated by limited proteolysis. Biochemistry 40(39):11757–11767PubMedCrossRefGoogle Scholar
  47. 47.
    Chan JCC (2012) Solid-state NMR techniques for the structural determination of amyloid fibrils. Top Curr Chem 306:47–88PubMedCrossRefGoogle Scholar
  48. 48.
    Habenstein B, Loquet A (2016) Solid-state NMR: an emerging technique in structural biology of self-assemblies. Biophys Chem 210:14–26PubMedCrossRefGoogle Scholar
  49. 49.
    Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24(4):705–715PubMedCrossRefGoogle Scholar
  50. 50.
    Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev. Phys Chem 62:279–299PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Pept Lett 13(3):229–234PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tycko R (2000) Solid-state NMR as a probe of amyloid fibril structure. Curr Opin Chem Biol 4(5):500–506PubMedCrossRefGoogle Scholar
  53. 53.
    Leonard SR, Cormier AR, Pang X et al (2013) Solid-state NMR evidence for beta-hairpin structure within MAX8 designer peptide nanofibers. Biophys J 105(1):222–230PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183(4678):1802–1803CrossRefGoogle Scholar
  55. 55.
    Wu XL, Zilm KW (1993) Cross polarization with high-speed magic-angle spinning. J Magn Reson A 104(2):154–165CrossRefGoogle Scholar
  56. 56.
    Bennett AE, Griffin RG, Ok JH et al (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96(11):8624CrossRefGoogle Scholar
  57. 57.
    Tycko R (2007) Symmetry-based constant-time homonuclear dipolar recoupling in solid state NMR. J Chem Phys 126(6):064506–064506PubMedCrossRefGoogle Scholar
  58. 58.
    Taboada L, Nicolás E, Giralt E (2001) One-pot full peptide deprotection in Fmoc-based solid-phase peptide synthesis: methionine sulfoxide reduction with Bu4NBr. Tetrahedron Lett 42(10):1891–1893CrossRefGoogle Scholar
  59. 59.
    Kates SA, Albericio F (2000) Solid-phase synthesis: a practical guide. Marcel Dekker, New YorkGoogle Scholar
  60. 60.
    Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32(27):6471–6477PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wang SSS, Tobler SA, Good TA et al (2003) Hydrogen exchange-mass spectrometry analysis of beta-amyloid peptide structure. Biochemistry 42(31):9507–9514PubMedCrossRefGoogle Scholar
  62. 62.
    Weinkauf R, Schanen P, Yang D et al (1995) Elementary processes in peptides—electron-mobility and dissociations in peptide cations in the gas-phase. J Phys Chem 99(28):11255–11265CrossRefGoogle Scholar
  63. 63.
    Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23(11):1528–1539PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rangachari V, Moore BD, Reed DK et al (2007) Amyloid-β(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry 46:12451–12462PubMedCrossRefGoogle Scholar
  65. 65.
    Nichols MR, Moss MA, Reed DK et al (2002) Growth of β-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127PubMedCrossRefGoogle Scholar
  66. 66.
    Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid b-protein fibrillogenesis: structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952PubMedCrossRefGoogle Scholar
  67. 67.
    Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17(1):48–57PubMedCrossRefGoogle Scholar
  68. 68.
    Kodali R, Williams AD, Chemuru S et al (2010) Abeta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 401(3):503–517PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gosal WS, Morten IJ, Hewitt EW et al (2005) Competing pathways determine fibril morphology in the self-assembly of beta(2)-microglobulin into amyloid. J Mol Biol 351(4):850–864PubMedCrossRefGoogle Scholar
  70. 70.
    Lewandowski JR, van der Wel PCA, Rigney M et al (2011) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133(37):14686–14698PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Krysmann MJ, Castelletto V, Kelarakis A et al (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47(16):4597–4605PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Paravastu AK, Qahwash I, Leapman RD et al (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106(18):7443–7448PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Petkova AT, Buntkowsky G, Dyda F et al (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335(1):247–260PubMedCrossRefGoogle Scholar
  74. 74.
    Tycko R, Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46(7):1487–1496PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Moore BD, Rangachari V, Tay WM et al (2009) Biophysical analyses of synthetic amyloid-β(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-β oligomers. Biochemistry 48:11796–11806PubMedCrossRefGoogle Scholar
  76. 76.
    Cormier AR, Lopez-Majada JM, Alamo RG et al (2013) Distinct solid and solution state self-assembly pathways of RADA16-I designer peptide. J Pept Sci 19(8):477–484PubMedCrossRefGoogle Scholar
  77. 77.
    Yokoi H, Kinoshita T, Zhang SG (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102(24):8414–8419PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Eby DM, Johnson GR, Farmer BL et al (2011) Supramolecular assembly of a biomineralizing antimicrobial peptide in coarse-grained Monte Carlo simulations. Phys Chem Chem Phys 13(3):1123–1130PubMedCrossRefGoogle Scholar
  79. 79.
    McNeill SA, Gor’kov PL, Shetty K et al (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144PubMedCrossRefGoogle Scholar
  80. 80.
    Griffiths DJ (1986) Introduction to electrodynamics, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  81. 81.
    Slichter CP (1996) Principles of magnetic resonance. Solid-state sciences, vol 1, 3rd edn. Springer, BerlinGoogle Scholar
  82. 82.
    Abragam A (1961) Principles of nuclear magnetism, International series of monographs on physics, vol 32. Clarendon Press, New YorkGoogle Scholar
  83. 83.
    Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New YorkGoogle Scholar
  84. 84.
    Bloch F (1946) Nuclear induction. Phys Rev 70(7–8):460–474CrossRefGoogle Scholar
  85. 85.
    Fukushima E, Roeder SBW (1981) Experimental pulse NMR: a nuts and bolts approach. Perseus Books, ReadingGoogle Scholar
  86. 86.
    Berger S, Braun S (2004) 200 and more NMR experiments: a practical course, 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  87. 87.
    Grey CP, Tycko R (2009) Solid-state NMR in biological and materials physics. Phys Today 62(9):44–49CrossRefGoogle Scholar
  88. 88.
    Bennett AE, Rienstra CM, Auger M et al (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(16):6951–6958CrossRefGoogle Scholar
  89. 89.
    Vanderhart DL, Earl WL, Garroway AN (1981) Resolution in C-13 NMR of organic-solids using high-power proton decoupling and magic-angle sample spinning. J Magn Reson 44(2):361–401Google Scholar
  90. 90.
    Chen LL, Kaiser JM, Lai JF et al (2007) J-based 2D homonuclear and heteronuclear correlation in solid-state proteins. Magn Reson Chem 45:S84–S92PubMedCrossRefGoogle Scholar
  91. 91.
    Ishii Y, Balbach JJ, Tycko R (2001) Measurement of dipole-coupled lineshapes in a many-spin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning. Chem Phys 266(2–3):231–236CrossRefGoogle Scholar
  92. 92.
    Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590CrossRefGoogle Scholar
  93. 93.
    Schaefer J, Stejskal EO (1976) C-13 nuclear magnetic-resonance of polymers spinning at magic angle. J Am Chem Soc 98(4):1031–1032CrossRefGoogle Scholar
  94. 94.
    Griffiths DJ (1995) Introduction to quantum mechanics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  95. 95.
    Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486PubMedCrossRefGoogle Scholar
  96. 96.
    Fritzsching KJ, Yang Y, Schmidt-Rohr K et al (2013) Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. J Biomol NMR 56(2):155–167PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178(2):248–282CrossRefPubMedGoogle Scholar
  98. 98.
    Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147(2):296–330PubMedCrossRefGoogle Scholar
  99. 99.
    Tay WM, Huang D, Rosenberry TL et al (2013) The Alzheimer’s amyloid-β(1-42) peptide forms off-pathway oligomers and fibrils that are distinguished structurally by intermolecular organization. J Mol Biol 425:2494–2508PubMedCrossRefGoogle Scholar
  100. 100.
    States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson (1969) 48(2):286–292CrossRefGoogle Scholar
  101. 101.
    Gueron M, Plateau P, Decorps M (1991) Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc 23:135–209CrossRefGoogle Scholar
  102. 102.
    Ishii, Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114(19):8473–8483CrossRefGoogle Scholar
  103. 103.
    Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637CrossRefGoogle Scholar
  104. 104.
    Tycko R, Ishii Y (2003) Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc 125(22):6606–6607PubMedCrossRefGoogle Scholar
  105. 105.
    Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon−nitrogen distances in uniformly13C,15 N-labeled solids. J Am Chem Soc 124(36):10728–10742PubMedCrossRefGoogle Scholar
  106. 106.
    Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45(2):498–512PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81(1):196–200Google Scholar
  108. 108.
    Jaroniec CP, Tounge BA, Herzfeld J et al (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate13C − 15 N distance measurements in uniformly 13C,15 N-labeled peptides. J Am Chem Soc 123(15):3507–3519PubMedCrossRefGoogle Scholar
  109. 109.
    Anderson WA (1961) Electrical current shims for correcting magnetic fields. Rev Sci Instrum 32(3):241CrossRefGoogle Scholar
  110. 110.
    Harris RK, Becker ED, De Menezes SMC et al (2001) NMR nomenclature. Nuclear spin properties and conventions for chemical shifts—(IUPAC recommendations 2001). Pure Appl Chem 73(11):1795–1818CrossRefGoogle Scholar
  111. 111.
    Cavanaugh J, Fairbrother WJ, Palmer AG et al (2006) Protein NMR spectroscopy, 2nd edn. Academic, RaleighGoogle Scholar
  112. 112.
    Taylor RE (2004) Setting up 13C CP/MAS experiments. Concepts Magn Reson A 22(1):37–49CrossRefGoogle Scholar
  113. 113.
    Taylor RE (2004) C-13 CP/MAS: application to glycine. Concepts Magn Reson Part A 22a(2):79–89CrossRefGoogle Scholar
  114. 114.
    Stejskal E, Schaefer J, Waugh J (1977) Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson (1969) 28(1):105–112CrossRefGoogle Scholar
  115. 115.
    Hohwy M, Rienstra C, Jaroniec C et al (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J Chem Phys 110(16):7983–7992CrossRefGoogle Scholar
  116. 116.
    Massiot D, Fayon F, Capron M et al (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76CrossRefGoogle Scholar
  117. 117.
    Schneider R, Seidel K, Etzkorn M et al (2009) Probing molecular motion by double-quantum (13C, 13C) solid-state NMR spectroscopy: application to ubiquitin. J Am Chem Soc 132(1):223–233CrossRefGoogle Scholar
  118. 118.
    Johnson RL, Anderson JM, Shanks BH et al (2013) Spectrally edited 2D 13 C 13 C NMR spectra without diagonal ridge for characterizing 13 C-enriched low-temperature carbon materials. J Magn Reson 234:112–124PubMedCrossRefGoogle Scholar
  119. 119.
    Wishart D, Sykes B (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180PubMedCrossRefGoogle Scholar
  120. 120.
    Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Mag Res Sp 58(1–2):62–87CrossRefGoogle Scholar
  121. 121.
    Shen Y, Delaglio F, Cornilescu G et al (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Petkova AT, Ishii Y, Tycko R (2002) Probing the structure of Alzheimer’s beta amyloid fibrils by two-dimensional C-13-C-13 and C-13-N-15 solid state NMR methods. Biophys J 82(1):320A–320ACrossRefGoogle Scholar
  123. 123.
    Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99(26):16742–16747PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Paravastu AK, Petkova AT, Tycko R (2006) Polymorphic fibril formation by residues 10-40 of the Alzheimer’s β-amyloid peptide. Biophys J 90(12):4618–4629PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ramamoorthy A (2005) NMR spectroscopy of biological solids. CRC Press, New YorkGoogle Scholar
  126. 126.
    Colvin MT, Silvers R, Frohm B et al (2015) High resolution structural characterization of Abeta42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 137(23):7509–7518PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jaroniec CP, MacPhee CE, Bajaj VS et al (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101(3):711–716PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Debelouchina GT, Bayro MJ, Fitzpatrick AW et al (2013) Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy. J Am Chem Soc 135(51):19237–19247PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bennett AE, Rienstra CM, Griffiths JM et al (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108(22):9463–9479CrossRefGoogle Scholar
  130. 130.
    Gullion T, Vega S (1992) A simple magic angle spinning NMR experiment for the dephasing of rotational echoes of dipolar coupled homonuclear spin pairs. Chem Phys Lett 194:424–428CrossRefGoogle Scholar
  131. 131.
    Petkova AT, Tycko R (2002) Sensitivity enhancement in structural measurements by solid state NMR through pulsed spin locking. J Magn Reson 155(2):293–299PubMedCrossRefGoogle Scholar
  132. 132.
    Jaroniec CP, Tounge BA, Rienstra CM et al (2000) Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J Magn Reson 146(1):132–139PubMedCrossRefGoogle Scholar
  133. 133.
    Verel R, Tomka IT, Bertozzi C et al (2008) Polymorphism in an amyloid-like fibril-forming model peptide. Angew Chem Int Ed 47(31):5842–5845CrossRefGoogle Scholar
  134. 134.
    Balbach JJ, Ishii Y, Antzutkin ON et al (2000) Amyloid fibril formation by a beta(16-22), a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39(45):13748–13759CrossRefPubMedGoogle Scholar
  135. 135.
    Xiao Y, Ma B, McElheny D et al (2015) Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22(6):499–505PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tycko R, Sciarretta KL, Orgel JPRO et al (2009) Evidence for novel β-sheet structures in iowa mutant β-amyloid fibrils. Biochemistry 48(26):6072–6084PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Danting Huang
    • 1
  • Benjamin C. Hudson
    • 1
  • Yuan Gao
    • 1
  • Evan K. Roberts
    • 1
  • Anant K. Paravastu
    • 1
    Email author
  1. 1.School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations