Purification of Fungal High Molecular Weight Genomic DNA from Environmental Samples

  • Laure Fauchery
  • Stéphane Uroz
  • Marc Buée
  • Annegret KohlerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1775)


Sequencing of a high number of fungal genomes has become possible due to the development of next generation sequencing techniques (NGS). The most recent developments aim to sequence single-molecule long-reads in order to improve genome assemblies, but consequently needs higher quality (minimum >20 kbp) DNA as starting material. However, environmental-derived samples from soil, wood, or litter often contain phenolic compounds, pigments, and other molecules that can be inhibitors for reactions during sequencing library construction. In this chapter, we propose an optimized protocol allowing the preparation of high quality and long fragment DNA from different samples (mycelium, fruiting body, soil) compatible with the current sequencing requirements.


CTAB-based DNA extraction Sucrose density gradient ultracentrifugation Fruiting body 



Our research was financed by the “Institut National de la Recherche Agronomique” (INRA), the Région Grand Est and the lab of excellence ARBRE (ANR-11-LABX-0002-01). The protocols were developed at the INRA Grand Est-Nancy Ecogenomics facilities. Part of our research was sponsored by the Genomic Science Program of the US Department of Energy, Office of Science, Biological and Environmental Research (under contract DE-AC05-00OR22725) and the US Department of Energy (DOE) Joint Genome Institute (JGI; Office of Science of the US Department of Energy). We would like to thank Francis Martin for helpful discussions and input on this chapter.


  1. 1.
    Kirk PM, Cannon PF, Minter DW, Stalpers J (2008) Dictionary of the fungi. CABI, WallingfordGoogle Scholar
  2. 2.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546CrossRefPubMedGoogle Scholar
  3. 3.
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:857–868CrossRefGoogle Scholar
  4. 4.
    Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefPubMedGoogle Scholar
  5. 5.
    Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351CrossRefPubMedGoogle Scholar
  6. 6.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(1):D699–D704CrossRefPubMedGoogle Scholar
  8. 8.
    Laiho O (1970) Paxillus involutus as a mycorrhizal symbiont of forest trees. Acta Forestalia Fennica 106:1–73Google Scholar
  9. 9.
    Yamad A, Katsuya K (1995) Mycorrhizal association of isolates from sporocarps and ectomycorrizal with Pinus densiflora seedings. Mycroscience 36:315–323CrossRefGoogle Scholar
  10. 10.
    Fulton PJ, Chungwongse J, Tanksley SS (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209CrossRefGoogle Scholar
  11. 11.
    Manter DK, Vivanco JM (2007) Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods 71:7–14CrossRefPubMedGoogle Scholar
  12. 12.
    Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159CrossRefPubMedGoogle Scholar
  13. 13.
    Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Laure Fauchery
    • 1
  • Stéphane Uroz
    • 1
  • Marc Buée
    • 1
  • Annegret Kohler
    • 1
    Email author
  1. 1.Institut National de la Recherche Agronomique, UMR1136 INRA-Université de Lorraine Interactions Arbres/MicroorganismesLaboratoire d’Excellence ARBREChampenouxFrance

Personalised recommendations