Small- and Large-Scale High Molecular Weight Genomic DNA Extraction from Planarians

  • Markus A. Grohme
  • Miquel Vila-Farré
  • Jochen C. RinkEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1774)


High-quality genomic DNA extraction is a starting point for many downstream applications in modern molecular biology. Here, we describe a simple method for isolating high molecular weight genomic DNA from planarians. The method is based on tissue lysis by a mixture of a chaotropic salt and detergent followed by organic extraction to remove proteins and lipids followed by a postpurification step to remove contaminating polysaccharides. The isolated DNA is of high molecular weight and compatible with polymerase chain reaction, cloning, or next-generation sequencing library preparation.

Key words

Planarian Genomic DNA Chaotropic salt CTAB Organic phase extraction Next-generation sequencing 



We would like to thank Sylke Winkler of the DNA sequencing core facility at the MPI-CBG for assistance with DNA quality control and quantification.


  1. 1.
    Chirgwin JM, Przybyla AE, MacDonald RJ et al (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299CrossRefGoogle Scholar
  2. 2.
    Garcia-Fernàndez J, Baguñà J, Saló E (1993) Genomic organization and expression of the planarian homeobox genes Dth-1 and Dth-2. Development 118:241–253PubMedGoogle Scholar
  3. 3.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefGoogle Scholar
  4. 4.
    Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59CrossRefGoogle Scholar
  5. 5.
    Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
  6. 6.
    Travers KJ, Chin C-S, Rank DR et al (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159CrossRefGoogle Scholar
  7. 7.
    Sheffner AL (1963) The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann N Y Acad Sci 106:298–310CrossRefGoogle Scholar
  8. 8.
    Murphy NR, Hellwig RJ (1996) Improved nucleic acid organic extraction through use of a unique gel barrier material. Biotechniques 21(934–6):938–939Google Scholar
  9. 9.
    Mukhopadhyay T, Roth JA (1993) Silicone lubricant enhances recovery of nucleic acids after phenol-chloroform extraction. Nucleic Acids Res 21:781–782CrossRefGoogle Scholar
  10. 10.
    Putnam NH, O’Connell BL, Stites JC et al (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–350CrossRefGoogle Scholar
  11. 11.
    Gaillard C, Strauss F (1990) Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res 18:378CrossRefGoogle Scholar
  12. 12.
    Skerra A (1992) Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res 20:3551–3554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Markus A. Grohme
    • 1
  • Miquel Vila-Farré
    • 1
  • Jochen C. Rink
    • 1
    Email author
  1. 1.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations