Tissue Transplantations in Planarians

  • José I. Rojo-Laguna
  • Emili SalóEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1774)


Tissue transplantation is an important tool for in vivo studies of pattern organization and axis establishment or maintenance in planarians. Further, transplants can inform on cell movements under different regenerative conditions or genetic backgrounds. Here, we detail classical grafting strategies that have been variously employed in planarian research over the last few decades. These protocols remain similarly useful for addressing current and future questions in the field and the step-by-step protocol that we provide allows facile adaptation of this important method into the experimental repertoire of a laboratory.

Key words

Planarian Transplantation Graft Tissue Axis Patterning Neoblast 



This work was supported by grant BFU2011-22786 (Ministerio de Economía y Competitividad, Spain) to E.S., and grant 2014 SGR 687 (AGAUR) to E.S. J.I.R-L received a FPI fellowship from the Ministerio de Educación y Ciencia (Spain).

Supplementary material

Video 1

Video showing the different steps to proceed in the host immobilization (Sarcophagus) (MP4 135851 kb)


  1. 1.
    Santos F (1929) Studies on transplantation in planarian. Biol Bull 57:188–197CrossRefGoogle Scholar
  2. 2.
    Schilt J (1970) Induction expèrimentale d’excroissances par des greffes hétéropolaires chez la planaire Dugesia lugubris O. Schimdt. Ann Embryol Morphogenet 3:93–106Google Scholar
  3. 3.
    Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126:1031–1040PubMedGoogle Scholar
  4. 4.
    Saló E, Baguñà J (1985) Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morphol 89:57–70PubMedGoogle Scholar
  5. 5.
    Guedelhoefer OC, Sanchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139(19):3510–3520CrossRefGoogle Scholar
  6. 6.
    Saló E, Baguñà J (1985) Proximal and distal transformation during intercalary regeneration in the planarian Dugesia (S) mediterranea. Rouxs Arch Dev Biol 194:364–368CrossRefGoogle Scholar
  7. 7.
    Saló E (2006) The power of regeneration and the stem-cell kingdom:freshwater planarians (Platyhelminthes). Bioessays 28:546–559CrossRefGoogle Scholar
  8. 8.
    Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86Google Scholar
  9. 9.
    Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816CrossRefGoogle Scholar
  10. 10.
    Fernández-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E, Gentile L (2010) Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137:1055–1106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics Microbiology and Statistics and Institute of Biomedicine IBUBUniversity of BarcelonaBarcelonaSpain

Personalised recommendations