Advertisement

Clonal Analysis of Planarian Stem Cells by Subtotal Irradiation and Single-Cell Transplantation

  • Irving E. Wang
  • Daniel E. Wagner
  • Peter W. Reddien
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1774)

Abstract

Stem cells, which both self-renew and produce differentiated progeny, represent fundamental biological units for the development, growth, maintenance, and regeneration of adult tissues. Characterization of stem cell lineage potential can be accomplished with clonal assays that interrogate stem cell output at the single-cell level. Here we present two methods for clonal analysis of individual proliferative cells (neoblasts) in the planarian Schmidtea mediterranea. The first method utilizes “subtotal” gamma irradiation to study rare surviving neoblasts and their clonal descendants in their native environment. The second method utilizes a fluorescent-activated cell sorting (FACS) strategy to obtain neoblast-enriched cell fractions, followed by single-cell transplantation into lethally irradiated hosts. Together, these methods provide a framework for generation and analysis of stem cell-derived clones in planarians.

Key words

FACS Irradiation Neoblast Single cell transplantation Clonal analysis 

References

  1. 1.
    Morgan T (1898) Experimental studies of the regeneration of Planaria maculata. Arch Entw Mech Org 7:364–397Google Scholar
  2. 2.
    Randolph H (1897) Observations and experiments on regeneration in planarians. Arch Entw Mech Org 5:352–372Google Scholar
  3. 3.
    Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5):635–649. https://doi.org/10.1016/j.devcel.2005.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reddien PW, Sánchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757. https://doi.org/10.1146/annurev.cellbio.20.010403.095114 CrossRefPubMedGoogle Scholar
  5. 5.
    Robb SMC, Ross E, Sánchez Alvarado A (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36(Database issue):D599–D606. https://doi.org/10.1093/nar/gkm684 CrossRefPubMedGoogle Scholar
  6. 6.
    Wolff E, Dubois F (1948) Sur la migration des cellules de régénération chez les planaires. Revue Swisse Zool 55:218–227CrossRefGoogle Scholar
  7. 7.
    Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220(2):142–153. https://doi.org/10.1006/dbio.2000.9645 CrossRefPubMedGoogle Scholar
  8. 8.
    Wagner DE, Ho JJ, Reddien PW (2012) Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10(3):299–311. https://doi.org/10.1016/j.stem.2012.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guo T, Peters AHFM, Newmark PA (2006) A bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11(2):159–169. https://doi.org/10.1016/j.devcel.2006.06.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310(5752):1327–1330. https://doi.org/10.1126/science.1116110 CrossRefPubMedGoogle Scholar
  11. 11.
    Pearson BJ, Sánchez Alvarado A (2010) A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137(2):213–221CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Scimone ML, Meisel J, Reddien PW (2010) The Mi-2-like Smed-CHD4 gene is required for stem cell differentiation in the planarian Schmidtea mediterranea. Development 137(8):1231–1241. https://doi.org/10.1242/dev.042051 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V (2005) DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132(8):1863–1874. https://doi.org/10.1242/dev.01785 CrossRefPubMedGoogle Scholar
  14. 14.
    Solana J, Lasko P, Romero R (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328(2):410–421. https://doi.org/10.1016/j.ydbio.2009.01.043 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O, Sano S, Son F, Suzuki N, Araki R, Abe M, Agata K (2012) Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol 56(1–3):93–102CrossRefPubMedGoogle Scholar
  16. 16.
    Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206(1):73–87. https://doi.org/10.1006/dbio.1998.9130 CrossRefPubMedGoogle Scholar
  17. 17.
    Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn H-P, Chen W, Kempa S, Ziebold U, Rajewsky N (2012) Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 31(12):2755–2769. https://doi.org/10.1038/emboj.2012.110 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wenemoser D, Reddien P (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344(2):979–991. https://doi.org/10.1016/j.ydbio.2010.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26(9):988–1002. https://doi.org/10.1101/gad.187377.112 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eisenhoffer GT, Kang H, Sánchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3(3):327–339. https://doi.org/10.1016/j.stem.2008.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86Google Scholar
  22. 22.
    Dubois F (1949) Contribution á l’ètude de la migration des cellules de règènèration chez les Planaires dulcicoles. Bull Biol Fr Belg 83:213–283Google Scholar
  23. 23.
    Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332(6031):811–816. https://doi.org/10.1126/science.1203983 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bardeen C, Baetjer F (1904) The inhibitive action of the Roentgen rays on regeneration in planarians. J Exp Zool 1:191–195. https://doi.org/10.1002/jez.1400010107 CrossRefGoogle Scholar
  25. 25.
    Santos FV (1929) Studies on transplantation in planaria. Biol Bull 57(3):188–197. https://doi.org/10.2307/1536781 CrossRefGoogle Scholar
  26. 26.
    Guedelhoefer OC, Sánchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139(19):3510–3520. https://doi.org/10.1242/dev.082099 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guedelhoefer OC, Sánchez Alvarado A (2012) Planarian immobilization, partial irradiation, and tissue transplantation. J Vis Exp (66). https://doi.org/10.3791/4015
  28. 28.
    Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126(5):1031–1040PubMedPubMedCentralGoogle Scholar
  29. 29.
    Salo E, Baguna J (1985) Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morphol 89:57–70PubMedGoogle Scholar
  30. 30.
    Hayashi T, Asami M, Higuchi S, Shibata N, Agata K (2006) Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Develop Growth Differ 48(6):371–380. https://doi.org/10.1111/j.1440-169X.2006.00876.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Irving E. Wang
    • 1
  • Daniel E. Wagner
    • 1
  • Peter W. Reddien
    • 1
  1. 1.Howard Hughes Medical Institute, Whitehead Institute for Biomedical ResearchMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations