Advertisement

General Principles of Planarian Embryogenesis and Its Analysis by In Situ Hybridization and Immunohistochemistry Methods

  • José María Martín-DuránEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1774)

Abstract

Thanks to their ability to regrow any missing body part after injury, planarians have become a well-established invertebrate model system in regenerative studies. However, planarians are also unique in their embryonic development, displaying ectolecithality, or the accumulation of embryonic nutrients into accessory cells accompanying the zygotes. Gaining a better understanding of their peculiar embryogenesis can offer answers to some fundamental questions regarding the appearance and evolution of planarian regenerative capacities, and in a broader context, the diversification of embryonic and postembryonic development in animals. In this chapter, I give an overview of the present knowledge of planarian embryogenesis and the methodologies applied to its study. I describe and comment on protocols to fix and dissect planarian egg capsules, and perform whole-mount in situ hybridization and whole-mount immunohistochemistry on planarian embryos.

Key words

Planarian Embryogenesis Embryo Development In situ hybridization Immunohistochemistry Regeneration 

Notes

Acknowledgments

I thank the former and present members of Rafael Romero’s lab, whose work and dedication were crucial to establish planarian embryos as a tractable molecular research system. Special thanks to Rafael Romero, whose unorthodoxy took him to planarian embryos, and somehow guided us throughout a wondrous journey. I thank Kevin Pang for critically reading the manuscript, and Andreas Hejnol and the Sars Centre (UiB) for their support. This work is supported by the Marie Curie IEF fellowship 329024.

References

  1. 1.
    Martín-Durán JM, Egger B (2012) Developmental diversity in free-living flatworms. EvoDevo 3:7CrossRefGoogle Scholar
  2. 2.
    Martín-Durán JM, Monjo F, Romero R (2012) Planarian embryology in the era of comparative developmental biology. Int J Dev Biol 56(1–3):39–48CrossRefGoogle Scholar
  3. 3.
    Laumer CE, Giribet G (2014) Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biol J Linn Soc 111(3):570–588CrossRefGoogle Scholar
  4. 4.
    Cardona A, Hartenstein V, Romero R (2005) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215(3):109–131CrossRefGoogle Scholar
  5. 5.
    Cardona A, Hartenstein V, Romero R (2006) Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev Genes Evol 216(11):667–681CrossRefGoogle Scholar
  6. 6.
    Solana J, Lasko P, Romero R (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328(2):410–421CrossRefGoogle Scholar
  7. 7.
    Solana J, Romero R (2009) SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development. Int J Biol Sci 5(1):64–73CrossRefGoogle Scholar
  8. 8.
    Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340(1):145–158CrossRefGoogle Scholar
  9. 9.
    von Döhren J (2011) The fate of the larval epidermis in the Desor-larva of Lineus viridis (Pilidiophora, Nemertea) displays a historically constrained functional shift from planktotrophy to lecithotrophy. Zoomorphology 130:189–196CrossRefGoogle Scholar
  10. 10.
    Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrates life cycles. Mar Ecol Prog Ser 177:269–297CrossRefGoogle Scholar
  11. 11.
    Skaer RJ (1965) The origin and continuous replacement of epidermal cells in the planarian Polycelis Tenuis (Iijima). J Embryol Exp Morphol 13:129–139PubMedGoogle Scholar
  12. 12.
    Martín-Durán JM, Romero R (2011) Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Dev Biol 352(1):164–176CrossRefGoogle Scholar
  13. 13.
    Adler CE, Seidel CW, McKinney SA, Sanchez Alvarado A (2014) Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. elife 3:e02238CrossRefGoogle Scholar
  14. 14.
    Le Moigne A (1968) Etude au microscope électronique de l’évolution des estructures embryonnaires de Planaires après irradiation aux rayons X. J Embryol Exp Morphol 19(2):181–192PubMedGoogle Scholar
  15. 15.
    Martín-Durán JM, Monjo F, Romero R (2012) Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa. Dev Genes Evol 222(1):45–54CrossRefGoogle Scholar
  16. 16.
    Le Moigne A (1966) Etude du développement embryonnaire et recherches sur les cellules de régénération chez l’embryon de la Planaire Polycelis nigra (Turbellarié, Triclade). J Embryol Exp Morph 15:39–60PubMedGoogle Scholar
  17. 17.
    Martín-Durán JM, Duocastella M, Serra P, Romero R (2008) New method to deliver exogenous material into developing planarian embryos. J Exp Zool B Mol Dev Evol 310(8):668–681CrossRefGoogle Scholar
  18. 18.
    Cardona A, Fernandez J, Solana J, Romero R (2005) An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression. Dev Genes Evol 215(9):482–488CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sars International Centre for Marine Molecular BiologyUniversity of BergenBergenNorway
  2. 2.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations