Advertisement

DNA Assembly with the DATEL Method

  • Zhen KangEmail author
  • Wenwen Ding
  • Peng Jin
  • Guocheng Du
  • Jian Chen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1772)

Abstract

Simple and reliable DNA assembly methods have become a critical technique in synthetic biology. Here, we present a protocol of the recently developed DATEL (scarless and sequence-independent DNA assembly method using thermostable exonuclease and ligase) method for the construction of genetic circuits and biological pathways from multiple DNA parts in one tube. DATEL is expected to be an applicable choice for both manual and automated high-throughput assembly of DNA fragments, which will greatly facilitate the rapid progress of synthetic biology and metabolic engineering.

Keywords

Synthetic biology DNA assembly Genetic circuits Molecular engineering 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31670092), the Fundamental Research Funds for the Central Universities (JUSRP51707A), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

References

  1. 1.
    Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118CrossRefGoogle Scholar
  2. 2.
    Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci U S A 101:15573–15578CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256CrossRefPubMedGoogle Scholar
  9. 9.
    Quan JY, Tian JD (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251CrossRefPubMedGoogle Scholar
  10. 10.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRefGoogle Scholar
  11. 11.
    Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) In-fusion BioBrick assembly and re-engineering. Nucleic Acids Res 38:2624–2636CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang RY, Shi ZY, Guo YY, Chen JC, Chen GQ (2013) DNA fragments assembly based on nicking enzyme system. PLoS One 8:e57943CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kang Z, Zhang J, Jin P, Yang S (2015) Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes. Bioengineered 6:136–140CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smanski MJ, Bhatia S, Zhao D, Park Y, BAW L, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241–1249CrossRefPubMedGoogle Scholar
  15. 15.
    Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105:20404–20409CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin QH, Jia B, Mitchell LA, Luo JC, Yang K, Zeller KI, Zhang WQ, Xu ZW, Stracquadanio G, Bader JS, Boeke JD, Yuan YJ (2015) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces Cerevisiae. ACS Synth Biol 4:213–220CrossRefPubMedGoogle Scholar
  17. 17.
    Shao ZY, Zhao H, Zhao HM (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou JT, Wu RH, Xue XL, Qin ZJ (2016) CasHRA (Cas9-facilitated homologous recombination assembly) method of constructing megabase-sized DNA. Nucleic Acids Res 44:e124CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus Subtilis genome vector. Nat Methods 5:41–43CrossRefPubMedGoogle Scholar
  20. 20.
    Jin P, Ding W, Du G, Chen J, Kang Z (2016) DATEL: a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase. ACS Synth Biol 5:1028–1032. https://doi.org/10.1021/acssynbio.6b00078 CrossRefPubMedGoogle Scholar
  21. 21.
    Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lyamichev V, Brow MAD, Dahlberg JE (1993) Structure-specific endonucleolytic cleavage of nucleic-acids by eubacterial DNA-polymerases. Science 260:778–783CrossRefPubMedGoogle Scholar
  23. 23.
    Breslauer KJ, Frank R, Blöcker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Kang
    • 1
    • 2
    • 3
    Email author
  • Wenwen Ding
    • 1
  • Peng Jin
    • 1
  • Guocheng Du
    • 1
    • 2
  • Jian Chen
    • 1
    • 2
  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.Synergetic Innovation Center of Food Safety and NutritionJiangnan UniversityWuxiChina
  3. 3.The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations