Advertisement

Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles

  • Carsten Pohl
  • László Mózsik
  • Arnold J. M. DriessenEmail author
  • Roel A. L. Bovenberg
  • Yvonne I. Nygård
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1772)

Abstract

Several CRISPR/Cas9 tools have been recently established for precise genome editing in a wide range of filamentous fungi. This genome editing platform offers high flexibility in target selection and the possibility of introducing genetic deletions without the introduction of transgenic sequences. This chapter describes an approach for the transformation of Penicillium chrysogenum protoplasts with preassembled ribonucleoprotein particles (RNPs) consisting of purified Cas9 protein and in vitro transcribed single guide RNA (sgRNA) for the deletion of genome sequences or their replacement with alternative sequences. This method is potentially transferable to all fungal strains where protoplasts can be obtained from.

Keywords

Ribonucleoprotein particle RNP CRISPR/Cas9 Genome editing NHEJ HDR Penicillium chrysogenum Filamentous fungi 

Notes

Acknowledgments

The work was supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement no. [607332], and the Marie Skłodowska-Curie Co-funding of regional, national and international programmes (COFUND-DP) ALERT programme under REA grant agreement no. [713482].

References

  1. 1.
    Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Deng H, Gao R, Liao X, Cai Y (2017) Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol 168(7):664–672CrossRefPubMedGoogle Scholar
  3. 3.
    Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38(4):637–642CrossRefPubMedGoogle Scholar
  4. 4.
    Fuller KK, Chen S, Loros JJ, Dunlap C (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Weyda I, Yang L, Vang J, Ahring BK (2017) A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 135:26–34CrossRefPubMedGoogle Scholar
  6. 6.
    Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5(7):754–764CrossRefPubMedGoogle Scholar
  7. 7.
    Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10(7):e0133085CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wenderoth M, Pinecker C, Voß B, Fischer R (2017) Establishment of CRISPR/Cas9 in Alternaria alternate. Fungal Genet Biol 101:55–60CrossRefPubMedGoogle Scholar
  9. 9.
    Qin H, Xiao H, Zou G, Zhou Z, Zhong J (2017) CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem 56:57–61CrossRefGoogle Scholar
  10. 10.
    Sugano SS, Suzuki H, Shimokita E, Chiba H, Noji S (2017) Genome editing in the mushroom- forming basidiomycete Coprinopsis cinerea, optimized by a high- throughput transformation system. Sci Rep 7(1):1260CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 89:3–9CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fang Y, Tyler BM (2016) Technical advance efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139CrossRefGoogle Scholar
  15. 15.
    Chen J, Lai Y, Wang L, Zhai S, Zou G, Zhou Z, Cui C (2017) CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep 7:45763CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Arazoef T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112(12):2543–2549CrossRefGoogle Scholar
  17. 17.
    Kovalchuk A, Weber SS, Nijland JG, Bovenberg RA, Driessen AJ (2012) Fungal ABC transporter deletion and localization analysis. In: Bolton TB (ed) Plant fungal pathogens: methods and protocols. Humana Press, Totowa, NJ, pp 1–16Google Scholar
  18. 18.
    Carvalho NDSP, Arentshorst M, Jin Kwon M, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87(4):1463–1473CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0 – a species independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fierro F, Kosalková K, Gutiérrez S, Martin JF (1996) Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr Genet 29:482–489CrossRefPubMedGoogle Scholar
  21. 21.
    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Geu-flores F, Nour-eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35(7):e55CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7):21622CrossRefGoogle Scholar
  24. 24.
    Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123CrossRefPubMedGoogle Scholar
  28. 28.
    Blin K, Pedersen LE, Weber T, Lee SY (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1(2):118–121CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Thyme SB, Akhmetova L, Montague TG, Valen E, Schier AF (2016) Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat Commun 7:11750CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran J-M (2009) Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 10:75CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carsten Pohl
    • 1
  • László Mózsik
    • 1
  • Arnold J. M. Driessen
    • 1
    Email author
  • Roel A. L. Bovenberg
    • 1
    • 2
  • Yvonne I. Nygård
    • 1
    • 3
  1. 1.Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
  2. 2.DSM Biotechnology CenterDSM Food Specialties B.V.DelftThe Netherlands
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations