Skip to main content

Single Cell Microarrays Fabricated by Microscale Plasma-Initiated Protein Patterning (μPIPP)

Part of the Methods in Molecular Biology book series (MIMB,volume 1771)


Micropatterned arrays considerably advanced single cell fluorescence time-lapse measurements by providing standardized boundary conditions for thousands of cells in parallel. In these assays, cells are forced to adhere to defined microstructured protein islands separated by passivated, nonadhesive areas. Here we provide a detailed protocol on how to reproducibly fabricate high quality single cell arrays by microscale plasma-initiated protein patterning (μPIPP). Advantages of μPIPP arrays are the ease of preparation and the unrestricted choice of substrates as well as proteins. We demonstrate how the arrays enable the efficient measurement of single cell time trajectories using automated data acquisition and data analysis by example of single cell gene expression after mRNA transfection and time courses of single cell apoptosis. We discuss the more general use of the protocol for assessment of single cell dynamics with the help of fluorescent reporters.

Key words

  • Microscale plasma-initiated protein patterning (μPIPP)
  • Single-cell analysis
  • High-throughput screening
  • Time-lapse microscopy

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7792-5_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7792-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci U S A 102(4):975–978.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123(24):4201–4213.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Piel M, Théry M (2014) Micropatterning in cell biology part a/B/C, vol 119. Academic Press

    Google Scholar 

  4. Röttgermann PJF, Alberola AP, Radler JO (2014) Cellular self-organization on micro-structured surfaces. Soft Matter 10(14):2397–2404.

    CrossRef  PubMed  Google Scholar 

  5. Segerer FJ, Röttgermann PJF, Schuster S, Piera Alberola A, Zahler S, Rädler JO (2016) Versatile method to generate multiple types of micropatterns. Biointerphases 11(1):011005.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Segerer FJ, Thüroff F, Piera Alberola A, Frey E, Rädler JO (2015) Emergence and persistence of collective cell migration on small circular micropatterns. Phys Rev Lett 114(22):228102

    CrossRef  PubMed  Google Scholar 

  7. Röttgermann PFJ, Dawson K, Rädler JO (2016) Time-resolved study of nanoparticle induced apoptosis using microfabricated single cell arrays. Microarrays 5(2):8.

    CrossRef  PubMed Central  Google Scholar 

  8. Chatzopoulou EI, Roskopf CC, Sekhavati F, Braciak TA, Fenn NC, Hopfner K-P, Oduncu FS, Fey GH, Rädler JO (2016) Chip-based platform for dynamic analysis of NK cell cytolysis mediated by a triplebody. Analyst 141(7):2284–2295

    CAS  CrossRef  PubMed  Google Scholar 

  9. Ferizi M, Leonhardt C, Meggle C, Aneja MK, Rudolph C, Plank C, Rädler JO (2015) Stability analysis of chemically modified mRNA using micropattern-based single-cell arrays. Lab Chip 15(17):3561–3571.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Picone R, Baum B, McKendry R (2014) Chapter 5 - plasma microcontact patterning (PμCP): a technique for the precise control of surface patterning at small-scale. In: Matthieu P, Manuel T (eds) Methods in cell biology, vol 119. Academic Press, pp 73–90.

    Google Scholar 

  11. ibidi (2016) Sticky-Slide VI0.4.

  12. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2001) Computer control of microscopes using μManager. In: Current protocols in molecular biology. John Wiley & Sons, Inc.

  13. Schwarzfischer M, Marr C, Krumsiek J, Hoppe P, Schroeder T, Theis FJ (2011) Efficient fluorescence image normalization for time lapse movies. Proc Microscopic Image Analysis with Applications in Biology 5

    Google Scholar 

Download references


Anita Reiser is supported by a DFG Fellowship through the Graduate School of Quantitative Biosciences Munich (QBM). Support from the European Commission’s 7th Framework Programme through project NanoMILE (Contract No. NMP4-LA-2013-310451) and from the Deutsche Forschungsgemeinschaft via the Nano Initiative Munich (NIM) and SFB 1032 project B01 is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joachim Oskar Rädler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Reiser, A., Zorn, M.L., Murschhauser, A., Rädler, J.O. (2018). Single Cell Microarrays Fabricated by Microscale Plasma-Initiated Protein Patterning (μPIPP). In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols