Skip to main content

Fabrication of Multielectrode Arrays for Neurobiology Applications

  • Protocol
  • First Online:
Book cover Cell-Based Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1771))

Abstract

Substrate-integrated multielectrode arrays (MEAs) enable multisite, long-term, and label-free sensing and actuation of neuronal electrical signals in reduced cell culture models for network electrophysiology. Conventional, thin-film fabricated passive MEAs typically provide a few tens of electrode sites. New generations of active CMOS-based high-resolution arrays provide the capabilities of simultaneous recordings from thousands of neurons over fields of view of several square millimeters, yet allowing extracellular electrical imaging to be achieved down to the subcellular scale. In turn, such advancement in chip-based electrical readouts can significantly complement recently developed biotechnological and bimolecular techniques for neurobiology applications. Here, we describe (1) a simple method to fabricate passive MEAs and (2) protocols for preparing and growing primary rat hippocampal neuronal cultures and human iPS-derived neurons on MEAs. The aim is to provide reliable protocols for initiating the reader to this technology and for stimulating their further development and experimental use in neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pine J (2006) A history of MEA development. In: Taketani M, Baudry M (eds) Advances in network electrophysiology. Springer, New York, pp 3–23

    Chapter  Google Scholar 

  2. Soe AK, Nahavandi S, Khoshmanesh K (2012) Neuroscience goes on a chip. Biosens Bioelectron 35(1):1–13

    Article  CAS  PubMed  Google Scholar 

  3. Pearce TM, Williams JC (2007) Microtechnology: meet neurobiology. Lab Chip 7(1):30–40

    Article  CAS  PubMed  Google Scholar 

  4. Johnstone AFM, Gross GW, Weiss DG, Schroeder OHU, Gramowski A, Shafer TJ (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350

    Article  CAS  PubMed  Google Scholar 

  5. Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK (2011) Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 32(1):158–168

    Article  CAS  PubMed  Google Scholar 

  6. Normann RA (2007) Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol 3(8):444–452

    Article  PubMed  Google Scholar 

  7. Jones IL, Livi P, Lewandowska MK, Fiscella M, Roscic B, Hierlemann A (2011) The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 399(7):2313–2329

    Article  CAS  PubMed  Google Scholar 

  8. Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L (2016) Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for 3-month culture with 4096-electrode arrays. Front Neurosci 10:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berdondini L, Overstolz T, De Rooij NF, KoudelkaHep M, Wäny M, Seitz P (2001) High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. 8th IEEE-ICECS Malta

    Google Scholar 

  10. Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18):2644–2651

    Article  CAS  PubMed  Google Scholar 

  11. Hierlemann BA, Frey U, Hafizovic S, Heer F (2011) Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99(2):252–284

    Article  CAS  Google Scholar 

  12. Muller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15(13):2767–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198

    Article  CAS  PubMed  Google Scholar 

  14. Ferrea E, Maccione A, Medrihan L, Nieus T, Ghezzi D, Baldelli P, Benfenati F, Berdondini L (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maccione A, Garofalo M, Nieus T, Tedesco M, Berdondini L, Martinoia S (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays. J Neurosci Methods 207(2):161–171

    Article  PubMed  Google Scholar 

  16. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439

    Article  CAS  PubMed  Google Scholar 

  17. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4(2):126–133

    Article  CAS  PubMed  Google Scholar 

  18. Bareket-Keren L, Hanein Y (2013) Carbon nanotube-based multielectrode arrays for neuronal interfacing: progress and prospects. Front Neural Circuits 6:122

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR (2011) PEDOT polymer coatings facilitate smaller neural recording electrodes. J Neural Eng 8(1):014001

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sessolo M, Khodagholy D, Rivnay J, Maddalena F, Gleyzes M, Steidl E, Buisson B, Malliaras GG (2013) Easy-to-fabricate conducting polymer microelectrode arrays. Adv Mater 25(15):2135–2139

    Article  CAS  PubMed  Google Scholar 

  21. Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29(24–25):3393–3399

    Article  CAS  PubMed  Google Scholar 

  22. Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment and neurite outgrowth of neural electrodes. Small 6(3):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2013) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272

    Article  Google Scholar 

  24. Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8(2):83–94

    Article  CAS  PubMed  Google Scholar 

  25. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993):830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian B, Jiang X, Lieber CM (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7(3):174–179

    Article  CAS  Google Scholar 

  27. Dipalo M, Messina GC, Amin H, La Rocca R, Shalabaeva V, Simi A, Maccione A, Zilio P, Berdondini L, De Angelis F (2015) 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7(8):3703–3711

    Article  CAS  PubMed  Google Scholar 

  28. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  29. Berdondini L, Chiappalone M, van der Wal PD, Imfeld K, de Rooij NF, Koudelka-Hep M, Tedesco M, Martinoia S, van Pelt J, Le Masson G, Garenne A (2006) A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors Actuators B Chem 114(1):530–541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Berdondini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malerba, M., Amin, H., Angotzi, G.N., Maccione, A., Berdondini, L. (2018). Fabrication of Multielectrode Arrays for Neurobiology Applications. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics