Advertisement

Photosynthesis pp 121-140 | Cite as

Chlorophyll Fluorescence Imaging

  • Tracy Lawson
  • Silvere Vialet-Chabrand
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1770)

Abstract

Chlorophyll fluorescence imaging provides a noninvasive rapid screen to assess the physiological status of a number of leaves or plants simultaneously. Although there are no standard protocols for chlorophyll fluorescence imaging, here we provide an example of routines for some of the typical measurements.

Key words

Chlorophyll fluorescence Imaging Photosynthetic efficiency Phenotypic screening Plant stress 

References

  1. 1.
    Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195–1205. https://doi.org/10.1093/jxb/erh145 CrossRefPubMedGoogle Scholar
  2. 2.
    Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493. https://doi.org/10.1104/pp.102.018093 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Badger MR, Fallahi H, Kaines S, Takahashi S (2009) Chlorophyll fluorescence screening of Arabidopsis thaliana for CO2 sensitive photorespiration and photoinhibition mutants. Funct Plant Biol 36:867. https://doi.org/10.1071/FP09199 CrossRefGoogle Scholar
  4. 4.
    Lawson T, Oxborough K, Morison J, Baker N (2001) Evaluating guard cell photosynthesis in intact green leaves using chlorophyll fluorescence imaging. Sci Access 3Google Scholar
  5. 5.
    Lawson T, Oxborough K, Morison JIL, Baker NR (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol 128:52–62CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baker NR, Oxborough K, Lawson T, Morison JI (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621. https://doi.org/10.1093/jexbot/52.356.615 CrossRefPubMedGoogle Scholar
  7. 7.
    Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 CrossRefPubMedGoogle Scholar
  8. 8.
    Jin ZL, Tian T, Naeem MS, Jilani G, Zhang F, Zhou WJ (2011) Chlorophyll fluorescence responses to application of new herbicide ZJ0273 in winter oilseed rape species. Int J Agric Biol 13:43–50Google Scholar
  9. 9.
    Mauromicale G, Ierna A, Marchese M (2006) Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica 44:76–82. https://doi.org/10.1007/s11099-005-0161-4 CrossRefGoogle Scholar
  10. 10.
    Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible Chickpea (Cicer Arietinum L.) genotypes. Acta Biol Cracoviensia Ser Bot 53(1):47–56. https://doi.org/10.2478/v10182-011-0007-2CrossRefGoogle Scholar
  11. 11.
    Baker NR (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. https://doi.org/10.1093/jxb/erh196 CrossRefPubMedGoogle Scholar
  12. 12.
    Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2006) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784. https://doi.org/10.1093/jxb/erl257 CrossRefPubMedGoogle Scholar
  13. 13.
    Harbinson J, Prinzenberg AE, Kruijer W, Aarts MG (2012) High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Curr Opin Biotechnol 23:221–226. https://doi.org/10.1016/j.copbio.2011.10.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090. https://doi.org/10.1093/jxb/erv204 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ehlert B, Hincha DK (2008) Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4:12. https://doi.org/10.1186/1746-4811-4-12 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tang JY (2006) The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana. J Exp Bot 57:527–536. https://doi.org/10.1093/jxb/erj032CrossRefPubMedGoogle Scholar
  17. 17.
    Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880. https://doi.org/10.1071/FP09145 CrossRefGoogle Scholar
  18. 18.
    Mutka AM, Bart RS (2015) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:734. https://doi.org/10.3389/fpls.2014.00734 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McElrone AJ, Hamilton JG, Krafnick AJ, Aldea M, Knepp RG, DeLucia EH (2010) Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environ Pollut 158:108–114. https://doi.org/10.1016/j.envpol.2009.07.029 CrossRefPubMedGoogle Scholar
  20. 20.
    Leipner J (2001) Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. J Exp Bot 52:1689–1696. https://doi.org/10.1093/jexbot/52.361.1689 CrossRefPubMedGoogle Scholar
  21. 21.
    Aldea M, Frank TD, DeLucia EH (2007) A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynth Res 90:161–172. https://doi.org/10.1007/s11120-006-9119-z CrossRefGoogle Scholar
  22. 22.
    Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. https://doi.org/10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  23. 23.
    Logan BA, Adams WW, Demmig-Adams B (2007) Viewpoint: avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853. https://doi.org/10.1071/FP07113 CrossRefGoogle Scholar
  24. 24.
    Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jexbot/51.345.659 CrossRefPubMedGoogle Scholar
  25. 25.
    Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. https://doi.org/10.1093/jxb/ert208 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Adams WW, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Chlorophyll a fluorescence. Springer, Dordrecht, pp 583–604CrossRefGoogle Scholar
  27. 27.
    Kautsky H, Appel W, Amann H (1960) Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants. Biochem Z 332:277–292PubMedGoogle Scholar
  28. 28.
    Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220. https://doi.org/10.1146/annurev.arplant.56.032604.144246 CrossRefPubMedGoogle Scholar
  29. 29.
    Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220. https://doi.org/10.1016/j.copbio.2011.12.012 CrossRefPubMedGoogle Scholar
  30. 30.
    Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21. https://doi.org/10.1111/j.1469-8137.2006.01835.x CrossRefPubMedGoogle Scholar
  31. 31.
    Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. https://doi.org/10.1146/annurev.arplant.47.1.655 CrossRefPubMedGoogle Scholar
  32. 32.
    Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079. https://doi.org/10.1111/j.1742-4658.2008.06263.x CrossRefPubMedGoogle Scholar
  33. 33.
    Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta Bioenerg 1817:977–982. https://doi.org/10.1016/j.bbabio.2012.03.026 CrossRefGoogle Scholar
  34. 34.
    Li X-P, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci 99:15222–15227. https://doi.org/10.1073/pnas.232447699 CrossRefPubMedGoogle Scholar
  35. 35.
    Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978. https://doi.org/10.1074/jbc.M707410200 CrossRefPubMedGoogle Scholar
  36. 36.
    Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92. https://doi.org/10.1104/pp.110.168831 CrossRefPubMedGoogle Scholar
  37. 37.
    Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916. https://doi.org/10.1104/pp.15.01935 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504. https://doi.org/10.1007/BF00402983 CrossRefPubMedGoogle Scholar
  39. 39.
    Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  40. 40.
    Genty B, Goulas Y, Dimon B, Peltier G, Moya I (1992) Modulation of efficiency of primary conversion in leaves, mechanisms involved at PSII. Res Photosynth 4:603–610Google Scholar
  41. 41.
    Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynth Res 54:135–142. https://doi.org/10.1023/A:1005936823310 CrossRefGoogle Scholar
  42. 42.
    Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res 66:3–12. https://doi.org/10.1023/A:1010729821876 CrossRefPubMedGoogle Scholar
  43. 43.
    Roháček K, Soukupová J, Barták M (2008) Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Plant Cell Compart Top Res Signpost, Kerala, India 41–104Google Scholar
  44. 44.
    Zangerl AR, Hamilton JG, Miller TJ, Crofts AR, Oxborough K, Berenbaum MR, de Lucia EH (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci 99:1088–1091. https://doi.org/10.1073/pnas.022647099 CrossRefPubMedGoogle Scholar
  45. 45.
    Morison JIL (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139:254–266. https://doi.org/10.1104/pp.105.062950CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lawson T, Morison J (2006) Visualising patterns of CO2 diffusion in leaves. New Phytol 169:641–643. https://doi.org/10.1111/j.1469-8137.2006.01655.x CrossRefPubMedGoogle Scholar
  47. 47.
    Lawson T, Lefebvre S, Baker NR, Morison JIL, Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59:3609–3619. https://doi.org/10.1093/jxb/ern211 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Loriaux SD, Avenson TJ, Welles JM, Mcdermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–1770. https://doi.org/10.1111/pce.12115 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EssexColchesterUK

Personalised recommendations