Photosynthesis pp 197-211 | Cite as

Liquid-Phase Measurements of Photosynthetic Oxygen Evolution

  • Dmitriy Shevela
  • Wolfgang P. Schröder
  • Johannes Messinger
Part of the Methods in Molecular Biology book series (MIMB, volume 1770)


This chapter compares two different techniques for monitoring photosynthetic O2 production: the widespread Clark-type O2 electrode and the more sophisticated membrane inlet mass spectrometry (MIMS) technique. We describe how a simple membrane inlet for MIMS can be made out of a commercial Clark-type cell, and outline the advantages and drawbacks of the two techniques to guide researchers in deciding which method to use. Protocols and examples are given for measuring O2 evolution rates and for determining the number of chlorophyll molecules per active photosystem II reaction center.

Key words

Photosynthetic water oxidation O2 evolution Photosystem II Clark-type electrode Membrane inlet mass spectrometry 



We thank Dr. Mun Hon Cheah for careful reading of the manuscript and valuable suggestions. The Swedish Energy Agency (Energimyndigheten), Swedish Science Foundation (Vetenskapsrådet), and the K & A Wallenberg Foundation are acknowledged for financial support.


  1. 1.
    Renger G, Hanssum B (2009) Oxygen detection in biological systems. Photosynth Res 102:487–498CrossRefPubMedGoogle Scholar
  2. 2.
    Van Gorkom HJ, Gast P (1996) Measurement of photosynthetic oxygen evolution. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, Advances in photosynthesis, vol 3. Kluwer Academic Publishers, Dordrecht, pp 391–405CrossRefGoogle Scholar
  3. 3.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  4. 4.
    Chodavarapu VP, Shubin DO, Bukowski RM et al (2007) CMOS-based phase fluorometric oxygen sensor system. IEEE Trans Circ Syst 54:111–118CrossRefGoogle Scholar
  5. 5.
    Shevela D, Messinger J (2013) Studying the oxidation of water to molecular oxygen in photosynthetic and artificial systems by time-resolved membrane-inlet mass spectrometry. Front Plant Sci 4:473. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Konermann L, Messinger J, Hillier W (2008) Mass spectrometry based methods for studying kinetics and dynamics in biological systems. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, Series advances in photosynthesis and respiration, vol 26. Springer, Dordrecht, pp 167–190CrossRefGoogle Scholar
  7. 7.
    Cheah MH, Millar AH, Myers RC et al (2014) Online oxygen kinetic isotope effects using membrane inlet mass spectrometry can differentiate between oxidases for mechanistic studies and calculation of their contributions to oxygen consumption in whole tissues. Anal Chem 86:5171–5178CrossRefPubMedGoogle Scholar
  8. 8.
    Beckmann K, Messinger J, Badger MR et al (2009) On-line mass spectrometry: membrane inlet sampling. Photosynth Res 102:511–522CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Delieu T, Walker DA (1972) An improved cathode for the measurement of photosynthetic oxygen evolution by isolated chloroplasts. New Phytol 71:201–255CrossRefGoogle Scholar
  10. 10.
    Gonzalez L, Bolano C, Pellissier F (2001) Use of oxygen electrode in measurements of photosynthesis and respiration. In: Reiggosa Roger MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 141–153Google Scholar
  11. 11.
    Walker D (1987) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis. Oxygraphics Limited, SheffieldGoogle Scholar
  12. 12.
    Canvin DT, Berry JA, Badger MR et al (1980) Oxygen exchange in leaves in the light. Plant Physiol 66:302–307CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark LC, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193CrossRefPubMedGoogle Scholar
  14. 14.
    Hoch G, Kok B (1963) A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101:160–170CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson RC, Cooks RG, Allen TM et al (2000) Membrane introduction mass spectrometry: trends and applications. Mass Spectrom Rev 19:1–37CrossRefPubMedGoogle Scholar
  16. 16.
    Silva ACB, Augusti R, Dalmazio I et al (1999) MIMS evaluation of pervaporation processes. Phys Chem Chem Phys 1:2501–2504CrossRefGoogle Scholar
  17. 17.
    Carpentier R (ed) (2011) Photosynthesis research protocols, Methods in molecular biology, vol 684, 2nd edn. Springer, CliftonGoogle Scholar
  18. 18.
    Shevela D, Beckmann K, Clausen J et al (2011) Membrane-inlet mass spectrometry reveals a high driving force for oxygen production by photosystem II. Proc Natl Acad Sci U S A 108:3602–3607CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shevela D, Messinger J (2012) Probing the turnover efficiency of photosystem II membrane fragments with different electron acceptors. Biochim Biophys Acta 1817:1208–1212CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUmeå UniversityUmeåSweden
  2. 2.Department of Chemistry - Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations