Advertisement

Photosynthesis pp 155-196 | Cite as

Using Stable Carbon Isotopes to Study C3 and C4 Photosynthesis: Models and Calculations

  • Nerea Ubierna
  • Meisha-Marika Holloway-Phillips
  • Graham D. Farquhar
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1770)

Abstract

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C-isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, tunable diode laser spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets, at low cost and with unprecedented temporal resolution. With more data and accompanying knowledge, it has become apparent that there is a need for increased complexity in models and calculations. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations needed for different applications.

Key words

Tunable diode laser absorption spectroscope C3 C4 Carbon isotope discrimination Laser Leakiness Photosynthesis Mesophyll conductance Online δ13

References

  1. 1.
    Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11(6):539–552CrossRefGoogle Scholar
  2. 2.
    Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149CrossRefGoogle Scholar
  3. 3.
    Zhang QL, Li WJ (1990) A calibrated measurement of the atomic weight of carbon. Chin Sci Bull 35:290–296Google Scholar
  4. 4.
    Tans PP, Crotwell AM, Thoning KW (2017) Abundances of isotopologues and calibration of CO2 greenhouse gas measurements. Atmos Meas Tech 10:2669–2685CrossRefGoogle Scholar
  5. 5.
    Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol 124(1–2):15–29CrossRefGoogle Scholar
  6. 6.
    Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher-plants. Aust J Plant Physiol 13(2):281–292CrossRefGoogle Scholar
  7. 7.
    Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9(2):121–137CrossRefGoogle Scholar
  8. 8.
    Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10(2):205–226CrossRefGoogle Scholar
  9. 9.
    Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35(7):1221–1231PubMedCrossRefGoogle Scholar
  10. 10.
    Bender MM (1968) Mass spectrometric studies of 13C variations in corn and other grasses. Radiocarbon 10(2):468–472CrossRefGoogle Scholar
  11. 11.
    Troughton JH (1979) δ13C as an inidcator of carboxylation reactions. In: Latzko GM (ed) Encyclopedia of plant physiologhy, vol 6. Springer, Berlin/New York, pp 140–147Google Scholar
  12. 12.
    Winter K (1981) CO2 and water vapour exchange, malate content and δ13C value in Cicer arietinum grown under two water regimes. Zeitschrift für Pflanzenphysiologie 101:421–430CrossRefGoogle Scholar
  13. 13.
    Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44:241–247PubMedCrossRefGoogle Scholar
  14. 14.
    Park R, Epstein S (1961) Metabolic fractionation of C13 and C12 in plants. Plant Physiol 36(2):133–138PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Melander L, Saunders WH (1979) Reaction rates of isotopic molecules. John Wiley and Sons, New YorkGoogle Scholar
  16. 16.
    O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20(4):553–567CrossRefGoogle Scholar
  17. 17.
    Cernusak LA, Farquhar GD, Wong SC, Stuart-Williams H (2004) Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark. Plant Physiol 136(2):3350–3363PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ribas-Carbó M, Still C, Berry J (2002) Automated system for simultaneous analysis of δ13C, δ18O and CO2 concentrations in small air samples. Rapid Commun Mass Spectrom 16:339–345PubMedCrossRefGoogle Scholar
  19. 19.
    Cousins AB, Badger MR, von Caemmerer S (2006) Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis. Plant Physiol 141(1):232–242PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schnyder H, Schäufele R, Lötscher M, Gebbing T (2003) Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ 26(11):1863–1874CrossRefGoogle Scholar
  21. 21.
    Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28(2):241–250CrossRefGoogle Scholar
  22. 22.
    Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007) A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant Cell Environ 30(4):469–482PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tuzson B, Mohn J, Zeeman MJ, Werner RA, Eugste W, Zahniser MS, Nelson DD, McManus JB, Emmenegger L (2008) High precision and continuous field measurements of δ13C and δ18O in carbon dioxide with a cryogen-free QCLAS. Appl Phys B 92:451–458CrossRefGoogle Scholar
  24. 24.
    Berryman EM, Marshall JD, Rahn T, Cook SP, Litvak M (2011) Adaptation of continuous-flow cavity ring-down spectroscopy for batch analysis of δ13C of CO2 and comparison with isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 25:2355–2360PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Evans JR, von Caemmerer S (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ 36:745–756PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ubierna N, Sun W, Kramer DM, Cousins AB (2013) The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. Plant Cell Environ 36:365–381PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lehmann MM, Wegener F, Barthel M, Maurino VG, Siegwolf RTW, Buchmann N, Werner C, Werner RA (2016) Metabolic fate of the carboxyl groups of malate and pyruvate and their influence on δ13C of leaf-respired CO2 during light enhanced dark respiration. Front Plant Sci 7:739PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hanson DT, Collins AM, Howland DTJ, Roesgen J, López-Nieves S, Timlin JA (2014) On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina. Photosynth Res 121:311–322PubMedCrossRefGoogle Scholar
  31. 31.
    Bickford CP, McDowell NG, Erhardt EB, Hanson DT (2009) High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma. Plant Cell Environ 32(7):796–810PubMedCrossRefGoogle Scholar
  32. 32.
    Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric For Meteorol 118(1–2):1–19CrossRefGoogle Scholar
  33. 33.
    Gentsch L, Hammerle A, Sturm P, Ogée J, Wingate L, Siegwolf R, Plüss P, Baur T, Buchmann N, Knohl A (2014) Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach. Plant Cell Environ 37(7):1516–1535PubMedCrossRefGoogle Scholar
  34. 34.
    Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:680–683PubMedCrossRefGoogle Scholar
  35. 35.
    Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  36. 36.
    Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Wiley-Blackwell, Malden, MA, pp 22–60CrossRefGoogle Scholar
  37. 37.
    Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  38. 38.
    Farquhar GD, Hubick KT, Condon AG, Richards RA (1989) Carbon isotope discrimination and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, pp 21–46CrossRefGoogle Scholar
  39. 39.
    Fry B (2006) Stable isotope ecology. Springer-VerlagCrossRefGoogle Scholar
  40. 40.
    Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965PubMedCrossRefGoogle Scholar
  41. 41.
    Ehleringer JR, Rundel PW (1989) Stable Isotopes: history, units, and instrumentation. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies (analysis and synthesis), vol 68. Springer, New York, NYGoogle Scholar
  42. 42.
    Tieszen LL, Boutton TW (1989) Stable carbon isotopes in terrestrial ecosystem research. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research, Ecological studies (analysis and synthesis), vol 68. Springer, New York, NY, pp 167–195CrossRefGoogle Scholar
  43. 43.
    Griffiths H (1998) Stable isotopes: integration of biological, ecological and geochemical processes, Environmental plant biology series. BIOS Scientific Publishers, OxfordGoogle Scholar
  44. 44.
    McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7–8):771–801CrossRefGoogle Scholar
  45. 45.
    Ellsworth PZ, Cousins AB (2016) Carbon isotopes and water use efficiency in C4 plants. Curr Opin Plant Biol 31:155–161PubMedCrossRefGoogle Scholar
  46. 46.
    Wahl EH, Fidric B, Rella CW, Koulokov S, Kharlamov B, Taz S, Kachanov AA, Richman BA, Crosson ER, Paldus BA, Kalaskar S, Bowling DR (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isotopes Environ Health Stud 42:21–35PubMedCrossRefGoogle Scholar
  47. 47.
    McManus JB, Nelson DD, Shorter JH, Jimenez R, Herdon S, Saleska SR, Zahniser MS (2005) A high precision pulsed quantum cascade laser spectrometer for measurements of stable isotopes of carbon dioxide. J Mod Opt 52(16):2309–2321CrossRefGoogle Scholar
  48. 48.
    Berden G, Peeters R, Meijer G (2000) Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem 19:565–607CrossRefGoogle Scholar
  49. 49.
    von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, CollingwoodGoogle Scholar
  50. 50.
    Ubierna N, Farquhar GD (2014) Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ 37:1494–1498PubMedCrossRefGoogle Scholar
  51. 51.
    Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J (2007) Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ 30(5):600–616PubMedCrossRefGoogle Scholar
  52. 52.
    Drake BL (2014) Using models of carbon isotope fractionation during photosynthesis to understand the natural fractionation ratio. Radiocarbon 56:29–38CrossRefGoogle Scholar
  53. 53.
    Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited. Theoretical background and experimental implications. Plant Cell Environ 35:2087–2103PubMedCrossRefGoogle Scholar
  54. 54.
    Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212CrossRefGoogle Scholar
  56. 56.
    Gu L, Sun Y (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ 37:1231–1249PubMedCrossRefGoogle Scholar
  57. 57.
    Gillon JS, Yakir D (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol 123(1):201–213PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210(3):875–889PubMedCrossRefGoogle Scholar
  59. 59.
    Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in-vitro Vpmax. Corrigendum. New Phytol 217:956–959Google Scholar
  60. 60.
    Loucos KE, Simonin KA, Barbour MM (2017) Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant Cell Environ 40:203–215PubMedCrossRefGoogle Scholar
  61. 61.
    Farquhar GD, Busch FA (2017) Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol 214:570–584PubMedCrossRefGoogle Scholar
  62. 62.
    Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92CrossRefGoogle Scholar
  63. 63.
    Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionations between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  64. 64.
    O’Leary MH (1984) Measurement of the isotope fractionation associated with diffusion of carbon dioxide in aqueous solution. J Phys Chem 88(4):823–825CrossRefGoogle Scholar
  65. 65.
    Zeebe RE (2011) On the molecular diffusion coefficients of dissolved CO2, HCO3 , and CO3 2− and their dependence on isotopic mass. Geochim Cosmochim Acta 75:2483–2498CrossRefGoogle Scholar
  66. 66.
    Henderson SA, von Caemmerer S, Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19(3):263–285CrossRefGoogle Scholar
  67. 67.
    von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price GD, Badger M, Furbank RT (1997) Carbon isotope discrimination during C4 photosynthesis: insights from transgenic plants. Aust J Plant Physiol 24(4):487–494CrossRefGoogle Scholar
  68. 68.
    Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23(25):6275–6284CrossRefGoogle Scholar
  69. 69.
    Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101(1):37–47PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Guy RD, Fogel MF, Berry JA, Hoering TC (1987) Isotope fractionation during oxygen production and consumption by plants. In: Biggins J (ed) Progress in photosynthesis research III. Martinus Nijhoff, Dordrecht, pp 597–600CrossRefGoogle Scholar
  71. 71.
    McNevin DB, Badger MR, Whitney SM, von Caemmerer S, Tcherkez G, Farquhar GD (2007) Differences in carbon isotope discrimination of three variants of d-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J Biol Chem 282:36068–36076PubMedCrossRefGoogle Scholar
  72. 72.
    von Caemmerer S, Evans JR (1991) Determination of the average partial-pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18(3):287–305CrossRefGoogle Scholar
  73. 73.
    Vu J, Yelenosky G, Bausher MG (1985) Photosynthetic activity in the flower buds of ‘Valencia’ orange (Citrus sinensis [L.] Osbeck). Plant Physiol 78:420–423PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Goerg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13C in Betula pendula. Oecologia 103:397–406PubMedCrossRefGoogle Scholar
  75. 75.
    Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytol 116:505–529CrossRefGoogle Scholar
  76. 76.
    Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 38:434–447Google Scholar
  77. 77.
    Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21(4):475–495CrossRefGoogle Scholar
  78. 78.
    O’Leary MH, Madhavan S, Paneth P (1992) Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell Environ 15(9):1099–1104CrossRefGoogle Scholar
  79. 79.
    Tcherkez G, Farquhar GD (2005) Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct Plant Biol 32(4):277–291CrossRefGoogle Scholar
  80. 80.
    Whelan T, Sackett WM, Benedict CR (1973) Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4-plants. Plant Physiol 51:1051–1054PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    von Caemmerer S, Tazoe Y, Evans JR, Whitney SM (2014) Exploiting transplastomically modified Rubisco to rapidly measure natural diversity in its carbon isotope discrimination using tuneable diode laser spectroscopy. J Exp Bot 65(13):3759–3767CrossRefGoogle Scholar
  82. 82.
    Farquhar G, Ball MC, von Caemmerer S, Roksandic Z (1982) Effect of salinity and humidity on δ13C value of halophytes-evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia 52:121–124PubMedCrossRefGoogle Scholar
  83. 83.
    Ubierna N, Marshall JD (2011) Estimation of canopy average mesophyll conductance using δ13C of phloem contents. Plant Cell Environ 34:1521–1535PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    von Caemmerer S, Ghannoum O, Pengelly JJL, Cousins AB (2014) Carbon isotope discrimination as a tool to explore C4 photosynthesis. J Exp Bot 65(13):3459–3470CrossRefGoogle Scholar
  85. 85.
    Gillon JS, Griffiths H (1997) The influence of (photo)respiration on carbon isotope discrimination in plants. Plant Cell Environ 20(10):1217–1230CrossRefGoogle Scholar
  86. 86.
    Lanigan GJ, Betson N, Griffiths H, Seibt U (2008) Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol 148(4):2013–2020PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rooney MA (1988) Short-term carbon isotope fractionation by plants. PhD thesis, University of Wisconsin, Madison, WIGoogle Scholar
  88. 88.
    Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardestrom P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81:139–152CrossRefGoogle Scholar
  89. 89.
    Tcherkez G (2006) How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct Plant Biol 33(10):911–920CrossRefGoogle Scholar
  90. 90.
    Tcherkez G, Schaufele R, Nogués S, Piel C, Boom A, Lanigan G, Barbaroux C, Mata C, Elhani S, Hemming D (2010) On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. Plant Cell Environ 33:900–913PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Tcherkez G, Farquhar G, Badeck F, Ghashghaie J (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct Plant Biol 31(9):857–877CrossRefGoogle Scholar
  92. 92.
    Tcherkez G, Mauve C, Lamothe M, Le Bras C, Grapin A (2011) The 13C/12C isotopic signal of day-respired CO2 in variegated leaves of Pelargonium × hortorum. Plant Cell Environ 34:270–283PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ghashghaie J, Duranceau M, Badeck FW, Cornic G, Adeline MT, Deleens E (2001) δ13C of CO2 respired in the dark in relation to δ13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ 24(5):505–515CrossRefGoogle Scholar
  94. 94.
    Bathellier C, Badeck FW, Couzi P, Harscoet S, Mauve C, Ghashghaie J (2008) Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol 177(2):406–418PubMedPubMedCentralGoogle Scholar
  95. 95.
    Sun W, Resco V, Williams DG (2010) Nocturnal and seasonal patterns of carbon isotope composition of leaf dark-respired carbon dioxide differ among dominant species in a semiarid savanna. Oecologia 164(2):297–310PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Stutz S, Edwards GE, Cousins AB (2014) Single-cell C4 photosynthesis: efficiency and acclimation of Bienertia sinuspersici to growth under low light. Plant Physiol 202:220–234Google Scholar
  97. 97.
    Kromdijk J, Griffiths H, Schepers HE (2010) Can the progressive increasse of C4 bundle-sheath leakiness at low PFD be explained by incomplete supression of photorespiration? Plant Cell Environ 33:1935–1948PubMedCrossRefGoogle Scholar
  98. 98.
    Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110(2):339–346PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31(5):602–621PubMedCrossRefGoogle Scholar
  100. 100.
    Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27(2):137–153CrossRefGoogle Scholar
  101. 101.
    Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60(8):2249–2270PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53(379):2423–2430PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Pérez-Martín A, Flexas J, Ribas-Carbó M, Bota J, Tomas M, Infante JM, Díaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26(4):595–601CrossRefGoogle Scholar
  105. 105.
    von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637CrossRefGoogle Scholar
  106. 106.
    Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60(8):2217–2234PubMedCrossRefGoogle Scholar
  107. 107.
    Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1148PubMedCrossRefGoogle Scholar
  108. 108.
    Loreto F, Harley PC, Dimarco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98(4):1437–1443PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sharkey TD, Vassey TL, Vanderveer PJ, Vierstra RD (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabaccum L.) having excess phytochrome. Planta 185:287–296PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15(8):873–899CrossRefGoogle Scholar
  111. 111.
    Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48(3):427–439PubMedCrossRefGoogle Scholar
  112. 112.
    Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60(8):2303–2314PubMedCrossRefGoogle Scholar
  113. 113.
    Warren CR, Low M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59(2):130–138CrossRefGoogle Scholar
  114. 114.
    Brugnoli E, Lauteri M, Guido MC (1994) Carbon isotope discrimination and photosynthesis: response and adaptation to environmental stress. In: de Kouchkovsky Y, Larher F (eds) Plant sciences, second general colloquium on plant sciences. Renners, SFPV, Universite de Renners, pp 269–272Google Scholar
  115. 115.
    Scartazza A, Lauteri M, Guido MC, Brugnoli E (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust J Plant Physiol 25:489–498CrossRefGoogle Scholar
  116. 116.
    Monti A, Brugnoli E, Scartazza A, Amaducci MT (2006) The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L). J Exp Bot 57(6):1253–1262PubMedCrossRefGoogle Scholar
  117. 117.
    Kromdijk J, Ubierna N, Cousins AB, Griffiths H (2014) Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J Exp Bot 65(13):3443–3457PubMedCrossRefGoogle Scholar
  118. 118.
    Pengelly JJL, Sirault XRR, Tazoe Y, Evans JR, Furbank RT, von Caemmerer S (2010) Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. J Exp Bot 61(14):4109–4122PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bellasio C, Griffiths H (2014) Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ 37(5):1046–1058PubMedCrossRefGoogle Scholar
  120. 120.
    Ubierna N, Sun W, Cousins AB (2011) The efficiency of C4 photosynthesis under low light conditions: assumptions and calculations with CO2 isotope discrimination. J Exp Bot 62(9):3119–3134PubMedCrossRefGoogle Scholar
  121. 121.
    Furbank RT, Hatch MD (1987) Mechanism of C4 photosynthesis - the size and composition of the inorganic carbon pool in bundle-sheath cells. Plant Physiol 85(4):958–964PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    He DX, Edwards GE (1996) Estimation of diffusive resistance of bundle-sheath cells to CO2 from modeling of C4 photosynthesis. Photosynth Res 49(3):195–208PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77(2–3):191–207CrossRefGoogle Scholar
  124. 124.
    Yin X, van der Putten PEL, Driever SM, Struik PC (2016) Temperature response of bundle-sheath conductance in maize leaves. J Exp Bot 67(9):2699–2714PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Gong XY, Schäufele R, Schnyder H (2016) Bundle-sheath leakiness and intrinsic water use efficiency of a perennial C4 grass are increased at high vapour pressure deficit during growth. J Exp Bot 68(2):321–333PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Stryer L (1988) Biochemistry. W. H. Freeman, New YorkGoogle Scholar
  127. 127.
    Cousins AB, Badger MR, von Caemmerer S (2008) C4 photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. J Exp Bot 59(7):1695–1703PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Tcherkez BR, Gout E, Mahe A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci 105:797–802PubMedCrossRefGoogle Scholar
  129. 129.
    Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bellasio C, Griffiths H (2014) Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. J Exp Bot 65(13):3725–3736PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Gong XY, Schäufele R, Feneis W, Schnyder H (2015) 13CO2/12CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. Plant Cell Environ 38:2417–2432PubMedCrossRefGoogle Scholar
  132. 132.
    Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S (2005) Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol 137:638–650PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Berry JA, Farquhar GD (1978) The CO2 concentrating function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J, Goodwin T (eds) Proc. 4th Int. Congr. Photosynthesis, Reading, England 1977 Biochem., Soc., London. pp 119–131Google Scholar
  134. 134.
    Osborn HL, Alonso-Cantabrana H, Sharwood RE, Covshoff S, Evans JR, Furbank RT, von Caemmerer S (2017) Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis. J Exp Bot 68(2):299–310PubMedCrossRefGoogle Scholar
  135. 135.
    Ubierna N, Gandin A, Cousins AB (2018) The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays. J Exp Bot, 69(5), 1159–1170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nerea Ubierna
    • 1
  • Meisha-Marika Holloway-Phillips
    • 2
  • Graham D. Farquhar
    • 2
  1. 1.School of Biological Sciences, Molecular Plant SciencesWashington State UniversityPullmanUSA
  2. 2.Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations