Chromothripsis pp 293-317 | Cite as

Time-Lapse Imaging for the Detection of Chromosomal Abnormalities in Primate Preimplantation Embryos

  • Brittany L. Daughtry
  • Shawn L. ChavezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)


The use of time-lapse microscopic imaging has proven to be a powerful tool for the study of mitotic divisions and other cellular processes across diverse species and cell types. Although time-lapse monitoring (TLM) of human preimplantation development was first introduced to the in vitro fertilization (IVF) community several decades ago, it was not until relatively recently that TLM systems were commercialized for clinical embryology purposes. Traditionally, human IVF embryos are assessed by successful progression and morphology under a stereomicroscope at distinct time points prior to selection for transfer. Due to the high frequency of aneuploidy, embryos may also be biopsied at the cleavage or blastocyst stage for preimplantation genetic screening (PGS) of whole and/or partial chromosomal abnormalities. However, embryo biopsy is invasive and can hinder subsequent development, and there are additional concerns over chromosomal mosaicism and resolution with PGS. Moreover, embryos are typically outside of the incubator in suboptimal culture conditions for extended periods of time during these procedures. With TLM systems, embryos remain in the stable microenvironment of an incubator and are simultaneously imaged for noninvasive embryo evaluation using a fraction of the light exposure as compared to a stereomicroscope. Each image is then compiled into a time-lapse movie, the information from which can be extrapolated to correlate morphological, spatial, and temporal parameters with embryo quality and copy number status. Here, we describe the various TLM systems available for clinical and/or research use in detail and provide step-by-step instructions on how the measurement of specific timing intervals and certain morphological criteria can be implemented into IVF protocols to enhance embryo assessment and avoid the selection of aneuploid embryos. We also discuss the biological significance of processes unique to mitotically dividing embryos and the likelihood that complex chromosomal events such as chromothripsis occur during preimplantation development in humans and other mammals, particularly nonhuman primates.

Key words

Aneuploidy Preimplantation Cellular fragmentation Embryo Human Imaging Micronuclei Mitosis, Multipolar Rhesus Time-lapse 


  1. 1.
    Vanneste E, Voet T, Le Caignec C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15(5):577–583. CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson DS, Cinnioglu C, Ross R et al (2010) Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod 16(12):944–949. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chow JF, Yeung WS, Lau EY et al (2014) Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol 12:105. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huang J, Yan L, Fan W et al (2014) Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril 102(6):1685–1691. CrossRefPubMedGoogle Scholar
  5. 5.
    Chavez SL, Loewke KE, Han J et al (2012) Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 3:1251. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Minasi MG, Colasante A, Riccio T et al (2016) Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod 31(10):2245–2254. CrossRefPubMedGoogle Scholar
  7. 7.
    Gleicher N, Vidali A, Braverman J et al (2016) Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol 14(1):54. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Greco E, Minasi MG, Fiorentino F (2015) Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med 373(21):2089–2090. CrossRefPubMedGoogle Scholar
  9. 9.
    Nagaoka SI, Hodges CA, Albertini DF et al (2011) Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr Biol 21(8):651–657. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang S, Hassold T, Hunt P et al (2017) Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell 168(6):977–989e917. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McCoy RC, Demko Z, Ryan A et al (2015) Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science 348(6231):235–238. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vanneste E, Voet T, Melotte C et al (2009) What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate. Hum Reprod 24(11):2679–2682. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13(3):189–203. CrossRefPubMedGoogle Scholar
  14. 14.
    Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Genes Dev 23(21):2461–2477. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Coonen E, Derhaag JG, Dumoulin JC et al (2004) Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod 19(2):316–324CrossRefPubMedGoogle Scholar
  16. 16.
    Vazquez-Diez C, Yamagata K, Trivedi S et al (2016) Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc Natl Acad Sci U S A 113(3):626–631. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Janssen A, van der Burg M, Szuhai K et al (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333(6051):1895–1898. CrossRefPubMedGoogle Scholar
  18. 18.
    Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hatch EM, Fischer AH, Deerinck TJ et al (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154(1):47–60. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pellestor F (2014) Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod 29(3):388–393. CrossRefPubMedGoogle Scholar
  23. 23.
    Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102(6):1785–1796. CrossRefPubMedGoogle Scholar
  24. 24.
    Daughtry BL, Chavez SL (2016) Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 363(1):201–225. CrossRefPubMedGoogle Scholar
  25. 25.
    Racowsky C, Vernon M, Mayer J et al (2010) Standardization of grading embryo morphology. Fertil Steril 94(3):1152–1153. CrossRefPubMedGoogle Scholar
  26. 26.
    Luke B, Brown MB, Stern JE et al (2014) Using the Society for Assisted Reproductive Technology Clinic Outcome System morphological measures to predict live birth after assisted reproductive technology. Fertil Steril 102(5):1338–1344. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gardner DK, Lane M, Stevens J et al (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73(6):1155–1158CrossRefPubMedGoogle Scholar
  28. 28.
    Scott RT Jr, Upham KM, Forman EJ et al (2013) Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 100(3):624–630. CrossRefPubMedGoogle Scholar
  29. 29.
    Campbell A, Fishel S, Bowman N et al (2013) Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online 26(5):477–485. CrossRefPubMedGoogle Scholar
  30. 30.
    Basile N, Nogales Mdel C, Bronet F et al (2014) Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril 101(3):699–704. CrossRefPubMedGoogle Scholar
  31. 31.
    Yang Z, Zhang J, Salem SA et al (2014) Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med Genet 7:38. Google Scholar
  32. 32.
    Chawla M, Fakih M, Shunnar A et al (2015) Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet 32(1):69–75. CrossRefPubMedGoogle Scholar
  33. 33.
    Sugimura S, Akai T, Somfai T et al (2010) Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod 83(6):970–978. CrossRefPubMedGoogle Scholar
  34. 34.
    Sugimura S, Akai T, Imai K (2017) Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev 63(4):353–357. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Weinerman R, Feng R, Ord TS et al (2016) Morphokinetic evaluation of embryo development in a mouse model: functional and molecular correlates. Biol Reprod 94(4):84. CrossRefPubMedGoogle Scholar
  36. 36.
    Burruel V, Klooster K, Barker CM et al (2014) Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep 4:6598. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang Y, Moussavi F, Lorenzen P (2013) Automated embryo stage classification in time-lapse microscopy video of early human embryo development. Med Image Comput Comput Assist Interv 16(Pt 2):460–467PubMedGoogle Scholar
  38. 38.
    Conaghan J, Chen AA, Willman SP et al (2013) Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril 100(2):412–419e415. CrossRefPubMedGoogle Scholar
  39. 39.
    VerMilyea MD, Tan L, Anthony JT et al (2014) Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod Biomed Online 29(6):729–736. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kieslinger DC, De Gheselle S, Lambalk CB et al (2016) Embryo selection using time-l apse analysis (Early Embryo Viability Assessment) in conjunction with standard morphology: a prospective two-center pilot study. Hum Reprod 31(11):2450–2457. CrossRefPubMedGoogle Scholar
  41. 41.
    Diamond MP, Suraj V, Behnke EJ et al (2015) Using the Eeva Test adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet 32(1):61–68. CrossRefPubMedGoogle Scholar
  42. 42.
    Meseguer M, Herrero J, Tejera A et al (2011) The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 26(10):2658–2671. CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Y, Chapple V, Roberts P et al (2014) Time-lapse videography of human oocytes following intracytoplasmic sperm injection: events up to the first cleavage division. Reprod Biol 14(4):249–256. CrossRefPubMedGoogle Scholar
  44. 44.
    Wong CC, Loewke KE, Bossert NL et al (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28(10):1115–1121. CrossRefPubMedGoogle Scholar
  45. 45.
    Vera-Rodriguez M, Chavez SL, Rubio C et al (2015) Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun 6:7601. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Palermo G, Munne S, Cohen J (1994) The human zygote inherits its mitotic potential from the male gamete. Hum Reprod 9(7):1220–1225CrossRefPubMedGoogle Scholar
  47. 47.
    Schatten H, Sun QY (2011) New insights into the role of centrosomes in mammalian fertilization and implications for ART. Reproduction 142(6):793–801. CrossRefPubMedGoogle Scholar
  48. 48.
    Kalatova B, Jesenska R, Hlinka D et al (2015) Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 117(1):111–125. CrossRefPubMedGoogle Scholar
  49. 49.
    Chamayou S, Patrizio P, Storaci G et al (2013) The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet 30(5):703–710. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hlinka D, Kalatova B, Uhrinova I et al (2012) Time-lapse cleavage rating predicts human embryo viability. Physiol Res 61(5):513–525PubMedGoogle Scholar
  51. 51.
    Ottolini CS, Kitchen J, Xanthopoulou L et al (2017) Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro. Sci Rep 7(1):9744. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Aguilar J, Rubio I, Munoz E et al (2016) Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate. Fertil Steril 106(2):291–299e292. CrossRefPubMedGoogle Scholar
  53. 53.
    Chavez SL, McElroy SL, Bossert NL et al (2014) Comparison of epigenetic mediator expression and function in mouse and human embryonic blastomeres. Hum Mol Genet 23(18):4970–4984. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Iwata K, Mio Y (2016) Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography. Reprod Med Biol 15:145–154CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332(6163):459–461. CrossRefPubMedGoogle Scholar
  56. 56.
    Antczak M, Van Blerkom J (1999) Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod 14(2):429–447CrossRefPubMedGoogle Scholar
  57. 57.
    Alikani M, Cohen J, Tomkin G et al (1999) Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 71(5):836–842CrossRefPubMedGoogle Scholar
  58. 58.
    Dozortsev D, Ermilov A, El-Mowafi DM et al (1998) The impact of cellular fragmentation induced experimentally at different stages of mouse preimplantation development. Hum Reprod 13(5):1307–1311CrossRefPubMedGoogle Scholar
  59. 59.
    Winston NJ, Johnson MH (1992) Can the mouse embryo provide a good model for the study of abnormal cellular development seen in human embryos? Hum Reprod 7(9):1291–1296CrossRefPubMedGoogle Scholar
  60. 60.
    Enders AC, Hendrickx AG, Binkerd PE (1982) Abnormal development of blastocysts and blastomeres in the rhesus monkey. Biol Reprod 26(2):353–366CrossRefPubMedGoogle Scholar
  61. 61.
    Tremoleda JL, Stout TA, Lagutina I et al (2003) Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol Reprod 69(6):1895–1906. CrossRefPubMedGoogle Scholar
  62. 62.
    Hardy K (1999) Apoptosis in the human embryo. Rev Reprod 4(3):125–134CrossRefPubMedGoogle Scholar
  63. 63.
    Hardy K, Spanos S, Becker D et al (2001) From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci U S A 98(4):1655–1660. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xu J, Cheung T, Chan ST et al (2001) The incidence of cytoplasmic fragmentation in mouse embryos in vitro is not affected by inhibition of caspase activity. Fertil Steril 75(5):986–991CrossRefPubMedGoogle Scholar
  65. 65.
    Buster JE, Bustillo M, Rodi IA et al (1985) Biologic and morphologic development of donated human ova recovered by nonsurgical uterine lavage. Am J Obstet Gynecol 153(2):211–217CrossRefPubMedGoogle Scholar
  66. 66.
    Pereda J, Croxatto HB (1978) Ultrastructure of a seven-cell human embryo. Biol Reprod 18(3):481–489CrossRefPubMedGoogle Scholar
  67. 67.
    Van Blerkom J, Davis P, Alexander S (2001) A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod 16(4):719–729CrossRefPubMedGoogle Scholar
  68. 68.
    Yang HW, Hwang KJ, Kwon HC et al (1998) Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 13(4):998–1002CrossRefPubMedGoogle Scholar
  69. 69.
    Jurisicova A, Varmuza S, Casper RF (1996) Programmed cell death and human embryo fragmentation. Mol Hum Reprod 2(2):93–98CrossRefPubMedGoogle Scholar
  70. 70.
    Hardarson T, Lofman C, Coull G et al (2002) Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online 5(1):36–38CrossRefPubMedGoogle Scholar
  71. 71.
    Lemmen JG, Agerholm I, Ziebe S (2008) Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online 17(3):385–391CrossRefPubMedGoogle Scholar
  72. 72.
    Munne S (2006) Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online 12(2):234–253CrossRefPubMedGoogle Scholar
  73. 73.
    Pellestor F, Girardet A, Andreo B et al (1994) Relationship between morphology and chromosomal constitution in human preimplantation embryo. Mol Reprod Dev 39(2):141–146. CrossRefPubMedGoogle Scholar
  74. 74.
    Giorgetti C, Terriou P, Auquier P et al (1995) Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod 10(9):2427–2431CrossRefPubMedGoogle Scholar
  75. 75.
    Ebner T, Yaman C, Moser M et al (2001) Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome. Fertil Steril 76(2):281–285CrossRefPubMedGoogle Scholar
  76. 76.
    Ziebe S, Petersen K, Lindenberg S et al (1997) Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod 12(7):1545–1549CrossRefPubMedGoogle Scholar
  77. 77.
    Edwards RG, Fishel SB, Cohen J et al (1984) Factors influencing the success of in vitro fertilization for alleviating human infertility. J In Vitro Fert Embryo Transf 1(1):3–23CrossRefPubMedGoogle Scholar
  78. 78.
    Pelinck MJ, Hoek A, Simons AH et al (2010) Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization. Fertil Steril 94(2):527–534. CrossRefPubMedGoogle Scholar
  79. 79.
    Hoover L, Baker A, Check JH et al (1995) Evaluation of a new embryo-grading system to predict pregnancy rates following in vitro fertilization. Gynecol Obstet Investig 40(3):151–157CrossRefGoogle Scholar
  80. 80.
    Desai N, Ploskonka S, Goodman LR et al (2014) Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol 12:54. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lagalla C, Tarozzi N, Sciajno R et al (2017) Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online 34(2):137–146. CrossRefPubMedGoogle Scholar
  82. 82.
    Bazrgar M, Gourabi H, Valojerdi MR et al (2013) Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells. Stem Cells Dev 22(17):2449–2456. CrossRefPubMedGoogle Scholar
  83. 83.
    Kirkegaard K, Sundvall L, Erlandsen M et al (2016) Timing of human preimplantation embryonic development is confounded by embryo origin. Hum Reprod 31(2):324–331. PubMedGoogle Scholar
  84. 84.
    Liu Y, Chapple V, Roberts P et al (2014) Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril 102(5):1295–1300e1292. CrossRefPubMedGoogle Scholar
  85. 85.
    Balakier H, Cabaca O, Bouman D et al (2000) Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum Reprod 15(11):2404–2410CrossRefPubMedGoogle Scholar
  86. 86.
    Xanthopoulou L, Delhanty JD, Mania A et al (2011) The nature and origin of binucleate cells in human preimplantation embryos: relevance to placental mesenchymal dysplasia. Reprod Biomed Online 22(4):362–370. CrossRefPubMedGoogle Scholar
  87. 87.
    Barlow P, Owen DA, Graham C (1972) DNA synthesis in the preimplantation mouse embryo. J Embryol Exp Morphol 27(2):431–445PubMedGoogle Scholar
  88. 88.
    Harrison RH, Kuo HC, Scriven PN et al (2000) Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote 8(3):217–224CrossRefPubMedGoogle Scholar
  89. 89.
    Los FJ, Van Opstal D, van den Berg C (2004) The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum Reprod Update 10(1):79–94CrossRefPubMedGoogle Scholar
  90. 90.
    Mantikou E, Wong KM, Repping S et al (2012) Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta 1822(12):1921–1930. CrossRefPubMedGoogle Scholar
  91. 91.
    Bolton H, Graham SJ, Van der Aa N et al (2016) Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun 7:11165. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cell, Developmental and Cancer BiologyOregon Health and Science University School of MedicinePortlandUSA
  2. 2.Division of Reproductive and Developmental SciencesOregon National Primate Research CenterBeavertonUSA
  3. 3.Department and Physiology and PharmacologyOregon Health and Science University School of MedicinePortlandUSA
  4. 4.Department of Obstetrics and GynecologyOregon Health and Science University School of MedicinePortlandUSA

Personalised recommendations