Chromothripsis pp 209-230 | Cite as

Study of Telomere Dysfunction in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability

  • Oumar Samassekou
  • Nathalie Bastien
  • Ju Yan
  • Sabine Mai
  • Régen Drouin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

Telomere restriction fragment, 3D quantitative FISH on nuclei, and quantitative FISH on metaphases are complementary approaches that explore telomere dysfunction genomically, cellularly, and chromosomally, respectively. We used these approaches to study association between telomere dysfunction and degree of genomic instability related to TP53 mutations in LoVo isogenic cell lines. We found a strong correlation between degree of genomic instability, telomere dysfunction, and specific mutations of TP53. The use of complementary approaches to study telomere biology is essential to have a comprehensive understanding of telomere involvement in genomic instability.

Key words

Telomere Genomic instability Telomere restriction fragment 3D telomere quantitative FISH MFISH Telomere aggregates Telomere length 

References

  1. 1.
    Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39:243–250.  https://doi.org/10.1038/ng1952 CrossRefPubMedGoogle Scholar
  2. 2.
    Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chong L, van Steensel B, Broccoli D et al (1995) A human telomeric protein. Science 270:1663–1667CrossRefPubMedGoogle Scholar
  4. 4.
    De Lange T, Shiue L, Myers RM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blasco MA, Lee HW, Hande MP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34CrossRefPubMedGoogle Scholar
  6. 6.
    Chuang TCY, Moshir S, Garini Y et al (2004) The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol 2:12.  https://doi.org/10.1186/1741-7007-2-12 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mai S, Garini Y (2005) Oncogenic remodeling of the three-dimensional organization of the interphase nucleus: c-Myc induces telomeric aggregates whose formation precedes chromosomal rearrangements. Cell Cycle 4:1327–1331CrossRefPubMedGoogle Scholar
  8. 8.
    Louis SF, Vermolen BJ, Garini Y et al (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A 102:9613–9618.  https://doi.org/10.1073/pnas.0407512102 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hande MP, Samper E, Lansdorp P et al (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 144:589–601CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Artandi SE, Chang S, Lee SL et al (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645.  https://doi.org/10.1038/35020592 CrossRefPubMedGoogle Scholar
  11. 11.
    Mc CB (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A 25:405–416CrossRefGoogle Scholar
  12. 12.
    Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186.  https://doi.org/10.1038/nrm.2016.171 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806.  https://doi.org/10.1038/nrg3317 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93.  https://doi.org/10.1016/j.cell.2010.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776.  https://doi.org/10.1016/j.ccr.2012.03.044 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71.  https://doi.org/10.1016/j.cell.2011.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Samassekou O, Bastien N, Lichtensztejn D et al (2014) Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes Chromosomes Cancer 53:934–950.  https://doi.org/10.1002/gcc.22205 CrossRefPubMedGoogle Scholar
  18. 18.
    Vermolen BJ, Garini Y, Mai S et al (2005) Characterizing the three-dimensional organization of telomeres. Cytometry A 67:144–150.  https://doi.org/10.1002/cyto.a.20159 CrossRefPubMedGoogle Scholar
  19. 19.
    Lansdorp PM, Verwoerd NP, van de Rijke FM et al (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691CrossRefPubMedGoogle Scholar
  20. 20.
    Londono-Vallejo JA, DerSarkissian H, Cazes L et al (2001) Differences in telomere length between homologous chromosomes in humans. Nucleic Acids Res 29:3164–3171CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Samassekou O, Ntwari A, Hebert J et al (2009) Individual telomere lengths in chronic myeloid leukemia. Neoplasia 11:1146–1154CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pocard M, Chevillard S, Villaudy J et al (1996) Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 12:875–882PubMedGoogle Scholar
  23. 23.
    Dridi W, Fetni R, Lavoie J et al (2003) The dominant-negative effect of p53 mutants and p21 induction in tetraploid G1 arrest depends on the type of p53 mutation and the nature of the stimulus. Cancer Genet Cytogenet 143:39–49CrossRefPubMedGoogle Scholar
  24. 24.
    Masramon L, Ribas M, Cifuentes P et al (2000) Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet Cytogenet 121:17–21CrossRefPubMedGoogle Scholar
  25. 25.
    Schaefer LH, Schuster D, Herz H (2001) Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc 204:99–107CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oumar Samassekou
    • 1
  • Nathalie Bastien
    • 2
  • Ju Yan
    • 3
  • Sabine Mai
    • 4
  • Régen Drouin
    • 5
  1. 1.3D Signatures Holdings Inc. MaRS Centre, South TowerTorontoCanada
  2. 2.Laboratoire d’Anatomopathologie et de Cytologie, Laboratoires médicaux de la Capitale Nationale et des Îles, site IUCPQ-UL, 2725 Chemin Sainte-FoyQuébecCanada
  3. 3.Cytogenetics and Molecular Cytogenetics laboratoryBeijing Boren HospitalBeijingChina
  4. 4.Department of Physiology and Pathophysiology, Cell BiologyUniversity of Manitoba, Research Institute of Oncology and Hematology, CancerCare ManitobaWinnipegCanada
  5. 5.Division of Medical Genetics, Department of PediatricsLaval University and Centre Hospitalier Universitaire de QuébecQuebec CityCanada

Personalised recommendations