Digital PCR pp 173-190 | Cite as

Detection and Quantification of Mosaic Genomic DNA Variation in Primary Somatic Tissues Using ddPCR: Analysis of Mosaic Transposable-Element Insertions, Copy-Number Variants, and Single-Nucleotide Variants

  • Bo Zhou
  • Michael S. Haney
  • Xiaowei Zhu
  • Reenal Pattni
  • Alexej Abyzov
  • Alexander E. UrbanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1768)


Here, we describe approaches using droplet digital polymerase chain reaction (ddPCR) to validate and quantify somatic mosaic events contributed by transposable-element insertions, copy-number variants, and single-nucleotide variants. In the ddPCR assay, sample or template DNA is partitioned into tens of thousands of individual droplets such that when DNA input is low, the vast majority of droplets contains no more than one copy of template DNA. PCR takes place in each individual droplet and produces a fluorescent readout to indicate the presence or absence of the target of interest allowing for the accurate “counting” of the number of copies present in the sample. The number of partitions is large enough to assay somatic mosaic events with frequencies down to less than 1%.

Key words

Droplet digital PCR (ddPCR) Somatic mosaicism Mobile elements Copy number variations (CNVs) Single nucleotide variations (SNVs) 



Research reported in this chapter was supported by the National Institute of Mental Health of the National Institutes of Health under award numbers R01MH094740 and R01MH100914. We also acknowledge additional funds from Stanford University (Department of Psychiatry and Behavioral Sciences, and Department of Genetics).


  1. 1.
    Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM (2012) Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492:438–442. Scholar
  2. 2.
    Campbell IM, Yuan B, Robberecht C, Pfundt R, Szafranski P, McEntagart ME, Nagamani SC, Erez A, Bartnik M, Wisniowiecka-Kowalnik B, Plunkett KS, Pursley AN, Kang SH, Bi W, Lalani SR, Bacino CA, Vast M, Marks K, Patton M, Olofsson P, Patel A, Veltman JA, Cheung SW, Shaw CA, Vissers LE, Vermeesch JR, Lupski JR, Stankiewicz P (2014) Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 95:173–182. Scholar
  3. 3.
    Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X, Yang L, Haseley P, Lehmann HS, Park PJ, Walsh CA (2015) Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59. Scholar
  4. 4.
    Edwards JH (1989) Familiarity, recessivity and germline mosaicism. Ann Hum Genet 53:33–47CrossRefGoogle Scholar
  5. 5.
    Freed D, Stevens EL, Pevsner J (2014) Somatic mosaicism in the human genome. Genes (Basel) 5:1064–1094. Scholar
  6. 6.
    Miotke L, Lau BT, Rumma RT, Ji HP (2014) High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem 86:2618–2624. Scholar
  7. 7.
    Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005. Scholar
  8. 8.
    Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011. Scholar
  9. 9.
    Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3:e2876. Scholar
  10. 10.
    Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8:e55943. Scholar
  11. 11.
    Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21(6):974–984CrossRefGoogle Scholar
  12. 12.
    McDermott GP, Do D, Litterst CM, Maar D, Hindson CM, Steenblock ER, Legler TC, Jouvenot Y, Marrs SH, Bemis A, Shah P, Wong J, Wang S, Sally D, Javier L, Dinio T, Han C, Brackbill TP, Hodges SP, Ling Y, Klitgord N, Carman GJ, Berman JR, Koehler RT, Hiddessen AL, Walse P, Bousse L, Tzonev S, Hefner E, Hindson BJ, Cauly TH 3rd, Hamby K, Patel VP, Regan JF, Wyatt PW, Karlin-Neumann GA, Stumbo DP, Lowe AJ (2013) Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal Chem 85:11619–11627. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bo Zhou
    • 1
    • 2
  • Michael S. Haney
    • 1
    • 2
  • Xiaowei Zhu
    • 1
    • 2
  • Reenal Pattni
    • 1
    • 2
  • Alexej Abyzov
    • 3
  • Alexander E. Urban
    • 1
    • 2
    Email author
  1. 1.Department of Psychiatry and Behavioral Sciences, Stanford Center for Genomics and Personalized MedicineStanford University School of MedicinePalo AltoUSA
  2. 2.Program on Genetics of Brain Function, Department of GeneticsStanford Center for Genomics and Personalized MedicinePalo AltoUSA
  3. 3.Department of Health Sciences Research, Center for Individualized MedicineMayo ClinicRochesterUSA

Personalised recommendations