Advertisement

Understanding Seed and Protocorm Development in Orchids

  • Edward C. Yeung
  • Yuan-Yuan Li
  • Yung-I Lee
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

In this overview, the development of orchid seed and protocorm is summarized. Although the structural organization of seed and protocorm appears simple, information is presented indicating that they have developmental programs similar to and as complex as other flowering plants. The varied suspensor morphologies, the presence of cuticular material covering the surface of the embryo, and the delicate seed coat structure ensure embryo survival, albeit unusual. The embryo is programmed to form a protocorm. The protocorm cells are destined to form a shoot apical meristem at the apical (chalazal) end and to house the symbiont at the basal (micropylar) end of a protocorm. Changes in protocorms during asymbiotic and symbiotic seed germination are discussed.

Key words

Embryo Suspensor Symbiotic seed germination Asymbiotic seed germination Endosperm Seed storage proteins and lipids Phytohormones Mycorrhizal fungi Seed coat Carapace Protocorm Shoot apical meristem 

References

  1. 1.
    Swamy BGL (1949) Embryological studies in the Orchidaceae. II. Embryology. Amer Midl Nat 41:202–232CrossRefGoogle Scholar
  2. 2.
    Wirth M, Withner CL (1959) Embryology and development in the Orchidaceae. In: Withner CL (ed) The orchids. Ronald Press Co., New York, pp 155–188Google Scholar
  3. 3.
    Dodson CH, Gillespie RJ (1967) The biology of the orchids. The Mid-America Orchid Congress, Inc., NashvilleGoogle Scholar
  4. 4.
    Poddubnaya-Arnoldi VA (1967) Comparative embryology of the Orchidaceae. Phytomorphology 17:312–320Google Scholar
  5. 5.
    Withner CL (1974) The orchids: scientific studies. Wiley, New YorkGoogle Scholar
  6. 6.
    Veyret Y (1974) Development of the embryo and the young seedling stages of orchids. In: Withner CL (ed) The orchids: scientific studies. Wiley, New York, pp 223–265Google Scholar
  7. 7.
    Arditti J (1992) Fundamentals of orchid biology. Wiley, New YorkGoogle Scholar
  8. 8.
    Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Rasmassen H (1995) Terrestrial orchids—from seed to mycotrophic plant. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Clements MA (1999) Embryology. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, General introduction, Apostasioideae, Cypripedioideae, vol 1. Oxford University Press, Oxford, pp 38–58Google Scholar
  11. 11.
    Vinogradova TN, Andronova EV (2002) Development of orchid seeds and seedlings. In: Kull T, Arditti J (eds) Orchid biology: reviews and perspectives, VIII. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 167–234CrossRefGoogle Scholar
  12. 12.
    Yam TW, Yeung EC, Ye X-L, Zee S-Y, Arditti J (2002) Embryology- seeds. In: Arditti J, Kull T (eds) Orchid biology: reviews and perspectives VIII. Kluwer, Dordrecht, The Netherlands, pp 287–384CrossRefGoogle Scholar
  13. 13.
    Batygina TB, Bragina EA, Vasilyeva VE (2003) The reproductive system and germination in orchids. Acta Biol Cracov Ser Bot 45:21–34Google Scholar
  14. 14.
    Andronova EV (2006) Embryogenesis in Orchidaceae. In: Batygina TB (ed) Embryology of flowering plants, Seed, vol 2. Science Pub., New Hampshire, pp 355–359Google Scholar
  15. 15.
    Lee Y-I, Yeung EC, Chung MC (2007b) Embryo development of orchids. World Scientific Publishing Co. Pte. Ltd., SingaporeCrossRefGoogle Scholar
  16. 16.
    Sabelli PA, Larkins BA (eds) (2015) Advances in seed biology. Frontiers Media, Lausanne.  https://doi.org/10.3389/978-2-88919-675-3 CrossRefGoogle Scholar
  17. 17.
    Belmonte MF, Kirbridge RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harade CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seeds. PNAS 110:E435–E444PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Teixeira da Silva JA (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricult Ornament Biotech 7:1–52Google Scholar
  19. 19.
    Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122:507–520CrossRefGoogle Scholar
  20. 20.
    Hossain MM, Kant R, Van PT, Winarto B, Zeng S-J, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139CrossRefGoogle Scholar
  21. 21.
    Teixeira da Silva JA (2003) The role of thin cell layers in regeneration and transformation in orchids. Plant Cell Tissue Organ Cult 113:149–161CrossRefGoogle Scholar
  22. 22.
    Yeung EC (2017) A perspective on orchid seed and protocorm development. Bot Stud 58:33PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ye XL, Zee SY, Yeung EC (1997) Suspensor development in the nun orchid, Phaius tankervilliae. Int J Plant Sci 158:704–712CrossRefGoogle Scholar
  25. 25.
    Huang BQ, Ye XL, Yeung EC, Zee SY (1998) Embryology of Cymbidium sinense: the microtubule organization of early embryos. Ann Bot 81:741–750CrossRefGoogle Scholar
  26. 26.
    Lee Y-I, Yeung EC, Lee N, Chung MC (2006) Embryo development in the lady’s slipper orchid, Paphiopedilum delenatii with emphases on the ultrastructure of the suspensor. Ann Bot 98:1311–1319PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15:23–30PubMedCrossRefGoogle Scholar
  28. 28.
    Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454PubMedCrossRefGoogle Scholar
  29. 29.
    Thompson RD, Hueros G, Becker HA, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775–783PubMedCrossRefGoogle Scholar
  30. 30.
    O’Brien TP, Feder N, McCully ME (1964) Poly-chromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  31. 31.
    Lee Y-I, Yeung EC (2010a) The osmotic property and fluorescent tracer movement of developing orchid embryos of Phaius tankervilliae (Aiton) BI. Sex Plant Reprod 23:337–341PubMedCrossRefGoogle Scholar
  32. 32.
    Yang CK, Lee YI (2014) The seed development of a mycoheterotrophic orchid, Cyrtosia javanica Blume. Bot Stud 55:44PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New YorkCrossRefGoogle Scholar
  34. 34.
    Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614PubMedCrossRefGoogle Scholar
  35. 35.
    Rodkiewicz B, Fyk B, Szczuka E (1994) Chlorophyll and cutin in early embryogenesis in Capsella, Arabidopsis, and Stellaria investigated by fluorescence microscopy. Sex Plant Reprod 7:287–289CrossRefGoogle Scholar
  36. 36.
    Lackie S, Yeung EC (1996) Zygotic embryo development in Daucus carota. Can J Bot 74:990–998CrossRefGoogle Scholar
  37. 37.
    Lee Y-I, Yeung EC, Lee N, Chung MC (2008a) Embryology of Phalaenopsis amabilis var. formosa : embryo development. Bot Studies 49:139–146Google Scholar
  38. 38.
    Yeung EC, Zee SY, Ye XL (1996) Embryology of Cymbidium sinense: embryo development. Ann Bot 78:105–110CrossRefGoogle Scholar
  39. 39.
    Nishimura G (1991) Comparative morphology of cotyledonous orchid seedlings. Lindleyana 6:140–146Google Scholar
  40. 40.
    Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1140PubMedCrossRefGoogle Scholar
  41. 41.
    Harrison CR (1977) Ultrastructural and histochemical changes during the germination of Cattleya aurantiaca (Orchidaceae). Bot Gaz 138:41–45CrossRefGoogle Scholar
  42. 42.
    Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA, Scowcroft WR, Wilen RW, Moloney MM, Holbrook LA (1990) Storage-protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181:18–26PubMedCrossRefGoogle Scholar
  43. 43.
    Zou JT, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv. Reston. Biological responses in the presence of 8-hydroxy abscisic acid. Plant Physiol 108:563–571PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Van der Kinderen G (1987) Abscisic acid in terrestrial orchid seeds: a possible impact on their germination. Lindleyana 2:84–87Google Scholar
  45. 45.
    Lee YI, Lu CF, Chung MC, Yeung EC, Lee N (2007a) Changes in endogenous abscisic acid levels and asymbiotic seed germination of a terrestrial orchid, Calanthe tricarinata Lindl. J Am Soc Hortic Sci 132:246–252Google Scholar
  46. 46.
    Lee Y-I, Chung M-C, Yeung EC, Lee N (2015) Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum. Ann Bot 116:403–411PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Schwallier RS, Bhoopalan V, Blackman S (2011) The influence of seed maturation on desiccation tolerance in Phalaenopsis amobilis hybrids. Sci Hortic 128:136–140CrossRefGoogle Scholar
  48. 48.
    Ling H, Zeng X, Guo S (2016) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 6:39693PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dure LS III (1979) Role of stored messenger RNA in late embryo development and germination. In: Rubenstein I, Phillips RL, Green CE, Gengenbach BG (eds) The plant seed. Academic Press, New York, pp 113–127CrossRefGoogle Scholar
  51. 51.
    Dure L (1985) Embryogenesis and gene expression during seed formation. Oxford Surv Plant Mol Cell Biol 2:179–197Google Scholar
  52. 52.
    Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hiraswa T, Kanekatsu M (2002) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53:687–698CrossRefGoogle Scholar
  53. 53.
    Raghavan V, Goh CJ (1994) DNA synthesis and mRNA accumulation during germination of embryos of the orchid Spathoglottis plicata. Protoplasma 183:137–147CrossRefGoogle Scholar
  54. 54.
    Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52:1501–1514PubMedCrossRefGoogle Scholar
  55. 55.
    Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC (2014) Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. Plant Mol Biol 84:203–226PubMedCrossRefGoogle Scholar
  56. 56.
    Fang SC, Chen JC, Wei MJ (2016) Protocorms and protocorm-like bodies are molecularly distinct from zygotic embryonic tissues in Phalaenopsis aphrodite. Plant Physiol 171:2682–2700PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen JC, Wei MJ, Fang SC (2016) Expression analysis of fertilization/early embryogenesis-associated genes in Phalaenopsis orchids. Plant Signal Behav 11(10):e1237331PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cocucci AE, Jensen WA (1969) Orchid embryology: the mature megagametophyte of Epidendrum scutella following fertilization. Amer J Bot 56:629–640CrossRefGoogle Scholar
  59. 59.
    Swamy BGL (1947) On the life-history of Vanilla planifolia. Bot Gaz 108:449–459CrossRefGoogle Scholar
  60. 60.
    Kodahl N, Johansen BB, Rasmussen FN (2015) The embryo sac of Vanilla imperialis (Orchidaceae) is six-nucleate, and double fertilization and formation of endosperm are not observed. J Linn Soc Bot 177:202–213CrossRefGoogle Scholar
  61. 61.
    Arekal GD, Karanth KA (1981) The embryology of Epipogium roseum (Orchidaceae). Plant Syst Evol 138:1–7CrossRefGoogle Scholar
  62. 62.
    Lopez-Villalobos A, Lopez-Quiroz AA, Yeung EC (2016) Asymmetric cell division in the zygote of flowering plants: the continuing polarized event of embryo sac development. In: Rose RJ (ed) Molecular cell biology of the growth and differentiation of plant cells. CRC Press, Boca Raton, pp 257–284Google Scholar
  63. 63.
    Vijayaraghavan MR, Prabhakar K (1984) The endosperm. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 319–376CrossRefGoogle Scholar
  64. 64.
    van der Pilj L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables, FLGoogle Scholar
  65. 65.
    Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421CrossRefGoogle Scholar
  66. 66.
    Molvray M, Chase MW (1999) Seed morphology. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, General introduction, Apostasioideae, Cypripedioideae, vol 1. Oxford University Press, New York, pp 59–66Google Scholar
  67. 67.
    Nishimura G, Yukawa T (2010) Dark material accumulation and sclerotization during seed coat formation in Vanilla planifolia Jacks: Ex Andrews (Orchidaceae). Bull Natl Mus Nat Sci Ser B 36:33–37Google Scholar
  68. 68.
    Veyret Y (1969) La structure des semences des Orchidaceae et leur aptitude a la germination in-vitro en cultures pures. Travaux du Laboratoire de (La Jaysinia), Museum Nationale D’Histroire Naturelle. Paris Fascicle 3:89–98Google Scholar
  69. 69.
    Yamazaki J, Miyoshi K (2006) In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcate (Orchidaceae). Ann Bot 98:1197–1206PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307CrossRefGoogle Scholar
  71. 71.
    Zhang XS, O’Neill SD (1993) Ovary and gametophyte are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403–418PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574PubMedCrossRefGoogle Scholar
  73. 73.
    Tsai WC, Hsiao YY, Pan ZJ, Kuoh CS, Chen WH, Chen H (2008) The role of ethylene in orchid ovule development. Plant Sci 175:98–105CrossRefGoogle Scholar
  74. 74.
    Novak SD, Luna LJ, Gamage RN (2014) Role of auxin in orchid development. Plant Signal Behav 9(10):e972277PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Novak SD, Whitehouse GA (2013) Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae). AoB Plants 5:pls053PubMedCentralCrossRefGoogle Scholar
  76. 76.
    Taylor JS, Blackman SJ, Yeung EC (1982) Hormonal and structural aspects of fruit development in the orchid, Epidendrum. J Exp Bot 33:495–505CrossRefGoogle Scholar
  77. 77.
    Knudson L (1922) Non-symbiotic germination of orchid seeds. Bot Gaz 73:1–25CrossRefGoogle Scholar
  78. 78.
    Knudson L (1946) A nutrient for germination of orchid seeds. Amer Orchid Soc Bull 15:214–217Google Scholar
  79. 79.
    Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97CrossRefGoogle Scholar
  80. 80.
    Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame W (2008) Techniques and applications of in vitro orchid seed germination. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol V, 1st edn. Global Science Books, Ltd., Isleworth, UK, pp 375–391Google Scholar
  81. 81.
    Zettler LW, McInnis TM Jr (1994) Light enhancement of symbiotic seed germination and development of an endangered terrestrial orchid (Platanthera integrilabia). Plant Sci 102:133–138CrossRefGoogle Scholar
  82. 82.
    Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150PubMedCrossRefGoogle Scholar
  83. 83.
    Baque MA, Shin YK, Elshmari T, Lee EJ, Paek KY (2011) Effect of light quality, sucrose and coconut water concentration on the micropropagation of Calanthe hybrids (‘Bukduseong’ × ‘Hyesung’ and ‘Chunkwang’ × Hyesung’). Aust J Crop Sci 5:1247–1254Google Scholar
  84. 84.
    Nikabadi S, Bunn E, Stevens J, Newman B, Turner SR, Dixon KW (2014) Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments. Plant Cell Tissue Organ Cult 118:559–569CrossRefGoogle Scholar
  85. 85.
    Bonnardeaux Y, Brundrett M, Batty AL, Dixon KW, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61PubMedCrossRefGoogle Scholar
  86. 86.
    Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242PubMedCrossRefGoogle Scholar
  87. 87.
    McCormick MK, Lee Taylor D, Juhaszova K, Burnett RKJ, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523PubMedCrossRefGoogle Scholar
  88. 88.
    Rasmussen HN, Dixon KW, Jěrěáková J, Tesitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stoutamire WP (1974) Terrestrial orchid seedlings. In: Withner CL (ed) The orchids: scientific studies. Wiley, New York, pp 101–108Google Scholar
  90. 90.
    Lee YI, Lee N, Yeung EC, Chung MC (2005) Embryo development of Cypripedium formosanum in relation to seed germination in vitro. J Am Soc Hortic Sci 130:747–753Google Scholar
  91. 91.
    Kako S (1976) In: Torigata H (ed) Study on the germination of seeds of Cymbidium goeringii, Seed formation and sterile culture of orchids. Seibundoshinkosha, Tokyo, pp 174–237. (in Japanese)Google Scholar
  92. 92.
    Lee YI (2011) In vitro culture and germination of terrestrial Asian orchid seeds. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols. Humana Press, New York, pp 53–62CrossRefGoogle Scholar
  93. 93.
    Van Waes JM, Debergh PC (1986) In vitro germination of some Western European orchids. Physiol Plant 67:253–261CrossRefGoogle Scholar
  94. 94.
    Miyoshi K, Mii M (1988) Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Sci Hortic 35:127–130CrossRefGoogle Scholar
  95. 95.
    Masanori T, Tomita M (1997) Effect of culture media and cold treatment on germination in asymbiotic culture of Cypripedium macranthos and Cypripedium japonicum. Lindleyana 12:208–213Google Scholar
  96. 96.
    Miyoshi K, Mii M (1998) Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiol Plant 102:481–448CrossRefGoogle Scholar
  97. 97.
    Chu CC, Mudge KW (1994) Effects of prechilling and liquid suspension culture on seed germination of the yellow lady’s slipper orchid (Cypripedium calceolus var. pubescens). Lindleyana 9:153–159Google Scholar
  98. 98.
    DePauw MA, Remphrey WR (1993) In vitro germination of three Cypripedium species in relation to time of seed collection, media, and cold treatment. Can J Bot 71:879–885CrossRefGoogle Scholar
  99. 99.
    St. Arnaud M, Lauzer D, Barabe D (1992) In vitro germination and early growth of seedlings of Cypripedium acaule (Orchidaceae). Lindleyana 7:22–27Google Scholar
  100. 100.
    Zhang Y, Lee Y-I, Deng L, Zhao S (2013) Asymbiotic germination of immature seeds and the seedling development of Cypripedium macranthos Sw., an endangered lady’s slipper orchid. Sci Hortic 164:130–136CrossRefGoogle Scholar
  101. 101.
    Lee Y-I, Yeung EC, Lee N, Chung MC (2008b) Embryology of Phalaenopsis amabilis var. formosa: embryo development. Bot Stud 49:139–146Google Scholar
  102. 102.
    Hsu RCC, Lee YI (2012) Seed development of Cypripedium debile Rchb. f. in relation to asymbiotic germination. HortSci 47:1495–1498Google Scholar
  103. 103.
    Lee Y-I, Yeung EC (2010b) Embryo development and in vitro seed germination of Bulbophyllum fascinator. Acta Hortic 878:243–250CrossRefGoogle Scholar
  104. 104.
    Suzuki RM, Moreira VC, Pescador R, Ferreira WM (2012) Asymbiotic seed germination and in vitro seedling development of the threatened orchid Hoffmannseggella cinnabarina. In Vitro Cell Dev Biol Plant 48:500–511CrossRefGoogle Scholar
  105. 105.
    Mweetwa AM, Welbaum GE, Tay D (2008) Effects of development, temperature, and calcium hypochlorite treatment on in vitro germinability of Phalaenopsis seeds. Sci Hortic 117:257–262CrossRefGoogle Scholar
  106. 106.
    Leroux GL, Barabe D, Vieh J (1997) Morphogenesis of the protocorm of Cypripedium acaule (Orchidaceae). Plant Syst Evol 205:53–72CrossRefGoogle Scholar
  107. 107.
    Manning JC, van Staden J (1987) The development and mobilization of seed reserves in some African orchids. Aust J Bot 35:343–353CrossRefGoogle Scholar
  108. 108.
    Alvarez MR (1968) Quantitative changes in nuclear DNA accompanying postgermination embryonic development in Vanda (Orchidaceae). Am J Bot 55:1036–1041CrossRefGoogle Scholar
  109. 109.
    Lim WL, Loh CS (2003) Endopolyploidy in Vanda Miss Joaquim (Orchidaceae). New Phytol 159:279–287CrossRefGoogle Scholar
  110. 110.
    Chen WH, Tang CY, Kao YL (2009) Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult 98:229–238CrossRefGoogle Scholar
  111. 111.
    Chen WH, Kao YL, Tang CY, Lean GT (2011) Endopolyploidy in Phalaenopsis orchids and its application in polyploid breeding. In: Chen W-H, Chen H-H (eds) Orchid biotechnology II. World Scientific Publishing Co. Ltd, Singapore, pp 25–48CrossRefGoogle Scholar
  112. 112.
    Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)—preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult 90:313–323CrossRefGoogle Scholar
  113. 113.
    Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. S Afri J Bot 104:76–81CrossRefGoogle Scholar
  114. 114.
    Liu H, Luo Y, Liu H (2010) Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China—a review. Bot Rev 76:241–262CrossRefGoogle Scholar
  115. 115.
    Chutima R, Lumyong S (2012) Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis 56:35–44CrossRefGoogle Scholar
  116. 116.
    Dohling S, Kumaria S, Tandom P (2008) Optimization of nutrient requirements for asymbiotic seed germination of Dendrobium longicornu Lindl. and D. formosum Roxb. Proc Indian Nat Sci Acad 74:167–171Google Scholar
  117. 117.
    Stewart SL, Kane ME (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:147–158CrossRefGoogle Scholar
  118. 118.
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  119. 119.
    Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486PubMedCrossRefGoogle Scholar
  120. 120.
    Dearnaley J, Perotto S, Selosse M-A (2016) Structure and development of orchid mycorrhizas. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley, New York, pp 63–86CrossRefGoogle Scholar
  121. 121.
    Currah RS, Zettler LW, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizae. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, vol VII. Kluwer Academic Publishers, Dordrecht, pp 117–170CrossRefGoogle Scholar
  122. 122.
    Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  123. 123.
    Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345CrossRefGoogle Scholar
  124. 124.
    Rasmussen HN (1990) Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. f.) Hunt & Summerh. (Orchidaceae) during germination in vitro. New Phytol 116:137–143CrossRefGoogle Scholar
  125. 125.
    Peterson RL, Massicotte HB, Melville LHF, Phillips F (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, OttawaGoogle Scholar
  126. 126.
    Richardson KA, Peterson RL, Currah RS (1992) Seed reserves and early symbiotic protocorm development of Platanthera hyperborea (Orchidaceae). Can J Bot 70:291–300CrossRefGoogle Scholar
  127. 127.
    Uetake Y, Kobayashi K, Ogoshi A (1992) Ultrastructural changes during the symbiotic development of Spiranthes sinensis (Orchidaceae) protocorms associated with binucleate Rhizoctonia anastomosis group C. Mycol Res 96:199–209CrossRefGoogle Scholar
  128. 128.
    Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol 127:711–718CrossRefGoogle Scholar
  129. 129.
    Wright M, Guest D, Cross R (2005) Development of mycorrhiza association in Caladenia tentaculata. Selbyana 26:114–124Google Scholar
  130. 130.
    Stoutamire WP (1983) Early growth in North American terrestrial orchid seedlings. In: Plaxton EH (ed) North American terrestrial orchids symposium II, proceedings and lectures. Michigan Orchid Society, Livonia, pp 14–24Google Scholar
  131. 131.
    Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F et al (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about N pathways in orchid mycorrhizas. New Phytol 213:365–379PubMedCrossRefGoogle Scholar
  132. 132.
    Dearnaley JDW, Cameron DD (2016) Nitrogen transport in the orchid mycorrhizal symbiosis—further evidence for a mutualistic association. New Phytol 213:10–12CrossRefGoogle Scholar
  133. 133.
    Beyrle HF, Smith SE, Peterson RL, Franco CMM (1995) Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can J Bot 73:1128–1140CrossRefGoogle Scholar
  134. 134.
    Stewart SL (2008) Orchid reintroduction in the United States: a mini-review. N Am Native Orchid J 14:54–59Google Scholar
  135. 135.
    Zeng SJ, Wu KL, Teixeira da Silva JA, Zhang JX, Chen ZL, Xia NH, Duan J (2012) Asymbiotic seed germination, seedling development and reintroduction of Paphiopedilum wardii Sumerh., an endangered terrestrial orchid. Sci Hortic 138:198–209CrossRefGoogle Scholar
  136. 136.
    Reiter N, Whitfield J, Pokkard G, Bedggood W, Argall M, Dixon K, Davis B, Swarts N (2016) Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol 217:81–95CrossRefGoogle Scholar
  137. 137.
    Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56:225–229PubMedCrossRefGoogle Scholar
  138. 138.
    Su CL, Chao YT, Yen SH, Chen CY, Chen WC, Chang YC, Shih MC (2013) Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol 54:1–11CrossRefGoogle Scholar
  139. 139.
    Zhao M-M, Zhang G, Zhang D-W, Hsiao Y-Y, Guo S-X (2013) ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One 8:e72705PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Valadares R, Perotto S, Santos E, Lambais M (2014) Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24:349–360PubMedCrossRefGoogle Scholar
  141. 141.
    Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu KW et al (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72PubMedCrossRefGoogle Scholar
  142. 142.
    Chin CF (2016) The proteome of orchids. Agri. Proteomics 1:117–125Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  2. 2.Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China
  3. 3.Biology DepartmentNational Museum of Natural ScienceTaichung, TaiwanRepublic of China

Personalised recommendations