Intravital Imaging of T Cells Within the Spinal Cord

  • Naoto KawakamiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1763)


Intravital imaging is a powerful tool for analyzing cellular functions in living animals. In particular, after the two-photon microscopy technique was introduced, a number of studies have visualized important processes. Here, we describe the methods for performing intravital imaging of the central nervous system. This method can be used for imaging not only lymphocytes but also blood vessels for ischemia studies, as well as glia cell activities.

Key words

Two-photon microscopy Intravital imaging Autoimmunity Central nervous system T cells 



This work was supported by DFG (Transregio 128, Heisenberg fellowship and individual grant KA2951/2-1), the Novartis Foundation for Therapeutic Research, Max-Planck Society, and LMU Munich.


  1. 1.
    Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18(2):123–131CrossRefPubMedGoogle Scholar
  2. 2.
    Bartholomäus I et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98CrossRefPubMedGoogle Scholar
  3. 3.
    Flügel A et al (1999) Gene transfer into CD4 + T lymphocytes: Green fluorescent protein engineered, encephalitogenic T cells used to illuminate immune responses in the brain. Nat Med 5(7):843–847CrossRefPubMedGoogle Scholar
  4. 4.
    Flügel A et al (2001) Migratory activity and functional changes of green fluorescent effector T cells before and during experimental autoimmune encephalomyelitis. Immunity 14(5):547–560CrossRefPubMedGoogle Scholar
  5. 5.
    Kawakami N et al (2004) The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199(2):185–197CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pesic M et al (2013) 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 123(3):1192–1201CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mues M et al (2013) Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 19(6):778–783CrossRefPubMedGoogle Scholar
  8. 8.
    Denk W, Strickler JH, Webb WW (1990) 2-Photon laser scanning fluorescence microscopy. Science 248:73–76CrossRefPubMedGoogle Scholar
  9. 9.
    Stoll S et al (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–1876CrossRefPubMedGoogle Scholar
  10. 10.
    Miller MJ et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873CrossRefPubMedGoogle Scholar
  11. 11.
    Cahalan MD et al (2003) Real-time imaging of lymphocytes in vivo. Curr Opin Immunol 15(4):372–377CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Benechet AP, Menon M, Khanna KM (2014) Visualizing T cell migration in situ. Front Immunol 5:363CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lodygin D et al (2013) A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat Med 19(6):784–790CrossRefPubMedGoogle Scholar
  14. 14.
    Komatsu N et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22(23):4647–4656CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kawakami N (2016) In vivo imaging in autoimmune diseases in the central nervous system. Allergol Int 65(3):235–242CrossRefPubMedGoogle Scholar
  16. 16.
    Gerard A et al (2014) Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell 158(3):492–505CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Arima Y et al (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the bood-brain barrier. Cell 148(3):447CrossRefPubMedGoogle Scholar
  18. 18.
    Barretto RPJ et al (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17(2):223–228CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22(3):453–460CrossRefPubMedGoogle Scholar
  20. 20.
    Davalos D et al (2008) Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods 169(1):1–7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Institute of Clinical NeuroimmunologyUniversity Hospital and Biomedical Center, Ludwig-Maximilians University MunichMunichGermany
  2. 2.Max-Planck Institute of NeurobiologyMartinsriedGermany

Personalised recommendations