Detecting Purinosome Metabolon Formation with Fluorescence Microscopy

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)

Abstract

A long-standing hypothesis in the de novo purine biosynthetic pathway is that there must be highly coordinated processes to allow for enhanced metabolic flux when a cell demands purines. One mechanism by which the pathway meets its cellular demand is through the spatial organization of pathway enzymes into multienzyme complexes called purinosomes. Cellular conditions known to impact the activity of enzymes in the pathway or overall pathway flux have been reflected in a change in the number of purinosome-positive cells or the density of purinosomes in a given cell. The following general protocols outline the steps needed for purinosome detection through transient expression of fluorescent protein chimeras or through immunofluorescence in purine-depleted HeLa cells using confocal laser scanning microscopy. These protocols define a purinosome as a colocalization of FGAMS with one additional pathway enzyme, such as PPAT or GART, and provide insights into the proper identification of a purinosome from other reported cellular bodies.

Key words

Purinosome Metabolon Purine metabolism De novo purine biosynthesis Fluorescence microscopy 

Notes

Acknowledgments

The authors wish to thank all current and prior members of the Benkovic Laboratory who have helped in generating and optimizing the methods outlined here. Financial support for this work was provided by the National Institutes of Health (NIH GM024129, S.J.B.).

References

  1. 1.
    Srere PA (1985) The metabolon. Trends Biochem Sci 10(3):109–110CrossRefGoogle Scholar
  2. 2.
    Barnes SJ, Weitzman PD (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett 201(2):267–270CrossRefPubMedGoogle Scholar
  3. 3.
    Ovadi J, Mohamed Osman IR, Batke J (1983) Interaction of the dissociable glycerol-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase. Quantitative analysis by an extrinsic fluorescence probe. Eur J Biochem 133(2):433–437CrossRefPubMedGoogle Scholar
  4. 4.
    Puchulu-Campanella E, Chu H, Anstee DJ, Galan JA, Tao WA, Low PS (2013) Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane. J Biol Chem 288(2):848–858. https://doi.org/10.1074/jbc.M112.428573 CrossRefPubMedGoogle Scholar
  5. 5.
    Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM (2010) Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285(1):265–276. https://doi.org/10.1074/jbc.M109.048777 CrossRefPubMedGoogle Scholar
  6. 6.
    An S, Kumar R, Sheets ED, Benkovic SJ (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320(5872):103–106. https://doi.org/10.1126/science.1152241 CrossRefPubMedGoogle Scholar
  7. 7.
    Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279(32):33035–33038. https://doi.org/10.1074/jbc.R400007200 CrossRefPubMedGoogle Scholar
  8. 8.
    Kohnhorst CL, Schmitt DL, Sundaram A, An S (2016) Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim Biophys Acta 1864(1):77–84. https://doi.org/10.1016/j.bbapap.2015.05.014 CrossRefPubMedGoogle Scholar
  9. 9.
    Chitrakar I, Kim-Holzapfel DM, Zhou W, French JB (2017) Higher order structures in purine and pyrimidine metabolism. J Struct Biol 197(3):354–364. https://doi.org/10.1016/j.jsb.2017.01.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Pedley AM, Benkovic SJ (2017) A new view into the regulation of purine metabolism: the purinosome. Trends Biochem Sci 42(2):141–154. https://doi.org/10.1016/j.tibs.2016.09.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Chan CY, Zhao H, Pugh RJ, Pedley AM, French J, Jones SA, Zhuang X, Jinnah H, Huang TJ, Benkovic SJ (2015) Purinosome formation as a function of the cell cycle. Proc Natl Acad Sci U S A 112(5):1368–1373. https://doi.org/10.1073/pnas.1423009112 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhao H, Chiaro CR, Zhang L, Smith PB, Chan CY, Pedley AM, Pugh RJ, French JB, Patterson AD, Benkovic SJ (2015) Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J Biol Chem 290(11):6705–6713. https://doi.org/10.1074/jbc.M114.628701 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    An S, Deng Y, Tomsho JW, Kyoung M, Benkovic SJ (2010) Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proc Natl Acad Sci U S A 107(29):12872–12876. https://doi.org/10.1073/pnas.1008451107 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    French JB, Jones SA, Deng H, Pedley AM, Kim D, Chan CY, Hu H, Pugh RJ, Zhao H, Zhang Y, Huang TJ, Fang Y, Zhuang X, Benkovic SJ (2016) Spatial colocalization and functional link of purinosomes with mitochondria. Science 351(6274):733–737. https://doi.org/10.1126/science.aac6054 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    French JB, Zhao H, An S, Niessen S, Deng Y, Cravatt BF, Benkovic SJ (2013) Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc Natl Acad Sci U S A 110(7):2528–2533. https://doi.org/10.1073/pnas.1300173110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Baresova V, Skopova V, Sikora J, Patterson D, Sovova J, Zikanova M, Kmoch S (2012) Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum Mol Genet 21(7):1534–1543. https://doi.org/10.1093/hmg/ddr591 CrossRefPubMedGoogle Scholar
  17. 17.
    Fu R, Sutcliffe D, Zhao H, Huang X, Schretlen DJ, Benkovic S, Jinnah HA (2015) Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways. Mol Genet Metab 114(1):55–61. https://doi.org/10.1016/j.ymgme.2014.11.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Schmitt DL, Cheng YJ, Park J, An S (2016) Sequestration-mediated downregulation of de novo purine biosynthesis by AMPK. ACS Chem Biol 11(7):1917–1924. https://doi.org/10.1021/acschembio.6b00039 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Deng Y, Gam J, French JB, Zhao H, An S, Benkovic SJ (2012) Mapping protein-protein proximity in the purinosome. J Biol Chem 287(43):36201–36207. https://doi.org/10.1074/jbc.M112.407056 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations