Dual-Color and 3D Super-Resolution Microscopy of Multi-protein Assemblies

  • Philipp Hoess
  • Markus Mund
  • Manuel Reitberger
  • Jonas RiesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)


Breaking the resolution limit of conventional microscopy by super-resolution microscopy (SRM) led to many new biological insights into protein assemblies at the nanoscale. Here we provide detailed protocols for single-molecule localization microscopy (SMLM) to image the structure of a protein complex. As examples, we show how to acquire single- and dual-color super-resolution images of the nuclear pore complex (NPC) and dual-color 3D data on actin and paxillin in focal adhesions.

Key words

Super-resolution microscopy Single-molecule localization microscopy PALM STORM Nuclear pore complex Focal adhesions Photoswitchable fluorescent protein 



We thank Ulf Matti for experimental assistance and Edward Lemke for the Flp-In™ T-Rex™ 293 cell line. This work was supported by EMBL International PhD Programme fellowships (P.H. and M.M.).


  1. 1.
    Yamanaka M, Smith NI, Fujita K (2014) Introduction to super-resolution microscopy. Microscopy (Oxf) 63:177–192. CrossRefGoogle Scholar
  2. 2.
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87CrossRefPubMedGoogle Scholar
  3. 3.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782. CrossRefPubMedGoogle Scholar
  4. 4.
    Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24:954–956. CrossRefPubMedGoogle Scholar
  5. 5.
    Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. CrossRefPubMedGoogle Scholar
  7. 7.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shroff H, White H, Betzig E (2008) Photoactivated localization microscopy (PALM) of adhesion complexes. Curr Protoc Cell Biol Chapter 4:Unit 4.21–Unit 4.27. CrossRefPubMedGoogle Scholar
  12. 12.
    Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644. CrossRefGoogle Scholar
  13. 13.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89. CrossRefPubMedGoogle Scholar
  14. 14.
    Gronemeyer T, Chidley C, Juillerat A et al (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316. CrossRefPubMedGoogle Scholar
  15. 15.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. CrossRefPubMedGoogle Scholar
  16. 16.
    Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. CrossRefPubMedGoogle Scholar
  17. 17.
    Lukinavičius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139. CrossRefPubMedGoogle Scholar
  18. 18.
    Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584. CrossRefPubMedGoogle Scholar
  19. 19.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. CrossRefPubMedGoogle Scholar
  20. 20.
    McKinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang M, Chang H, Zhang Y et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729. CrossRefPubMedGoogle Scholar
  22. 22.
    Gunewardene MS, Subach FV, Gould TJ et al (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101:1522–1528. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    McEvoy AL, Hoi H, Bates M et al (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7:e51314. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Testa I, Wurm CA, Medda R et al (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shroff H, Galbraith CG, Galbraith JA et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104:20308–20313. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tam J, Cordier GA, Borbely JS et al (2014) Cross-talk-free multi-color STORM imaging using a single fluorophore. PLoS One 9:e101772. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Valley CC, Liu S, Lidke DS, Lidke KA (2015) Sequential superresolution imaging of multiple targets using a single fluorophore. PLoS One 10:e0123941. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jungmann R, Avendaño MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pavani SRP, Thompson MA, Biteen JS et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106:2995–2999. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shechtman Y, Sahl SJ, Backer AS, Moerner WE (2014) Optimal point spread function design for 3D imaging. Phys Rev Lett 113:133902. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mlodzianoski MJ, Juette MF, Beane GL, Bewersdorf J (2009) Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt Express 17:8264–8277. CrossRefPubMedGoogle Scholar
  34. 34.
    Hajj B, Wisniewski J, Beheiry El M et al (2014) Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. Proc Natl Acad Sci U S A 111:17480–17485. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nagorni M, Hell SW (1998) 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J Struct Biol 123:236–247. CrossRefPubMedGoogle Scholar
  36. 36.
    Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nat Publ Group 468:580–584. CrossRefGoogle Scholar
  37. 37.
    Dudok B, Barna L, Ledri M et al (2015) Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 18:75–86. CrossRefPubMedGoogle Scholar
  38. 38.
    Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456. CrossRefPubMedGoogle Scholar
  39. 39.
    Suleiman H, Zhang L, Roth R et al (2013) Nanoscale protein architecture of the kidney glomerular basement membrane. elife 2:e01149. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Szymborska A, de Marco A, Daigle N et al (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658. CrossRefPubMedGoogle Scholar
  41. 41.
    Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Edelstein AD, Tsuchida MA, Amodaj N et al (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1:10. CrossRefGoogle Scholar
  43. 43.
    Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wolter S, Löschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041. CrossRefPubMedGoogle Scholar
  45. 45.
    Izeddin I, Boulanger J, Racine V et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20:2081–2095. CrossRefPubMedGoogle Scholar
  46. 46.
    Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–375. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ong WQ, Citron YR, Schnitzbauer J et al (2015) Heavy water: a simple solution to increasing the brightness of fluorescent proteins in super-resolution imaging. Chem Commun (Camb) 51:13451–13453. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Philipp Hoess
    • 1
  • Markus Mund
    • 1
  • Manuel Reitberger
    • 1
  • Jonas Ries
    • 1
    Email author
  1. 1.Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations