Advertisement

Proteomic Profiling of Integrin Adhesion Complex Assembly

  • Adam Byron
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)

Abstract

Cell adhesion to components of the cellular microenvironment via cell-surface adhesion receptors controls many aspects of cell behavior in a range of physiological and pathological processes. Multimolecular complexes of scaffolding and signaling proteins are recruited to the intracellular domains of adhesion receptors such as integrins, and these adhesion complexes tether the cytoskeleton to the plasma membrane and compartmentalize cellular signaling events. Integrin adhesion complexes are highly dynamic, and their assembly is tightly regulated. Comprehensive, unbiased, quantitative analyses of the composition of different adhesion complexes over the course of their formation will enable better understanding of how the dynamics of adhesion protein recruitment influence the functions of adhesion complexes in fundamental cellular processes. Here, a pipeline is detailed integrating biochemical isolation of integrin adhesion complexes during a time course, quantitative proteomic analysis of isolated adhesion complexes, and computational analysis of temporal proteomic data. This approach enables the characterization of adhesion complex composition and dynamics during complex assembly.

Key words

Bioinformatics Cell adhesion Cell signaling Data analysis Hierarchical clustering Integrins Interaction networks Proteomics 

Notes

Acknowledgments

J.A. Askari, J.D. Humphries, M.J. Humphries, and other members of the Humphries Laboratory (University of Manchester) are gratefully acknowledged for the development and optimization of the integrin adhesion complex purification protocol described herein, which was funded by the Wellcome Trust. A.B. is funded by Cancer Research UK (grant C157/A15703 to M.C. Frame, University of Edinburgh).

References

  1. 1.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219. https://doi.org/10.1126/science.1176009 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Byron A, Morgan MR, Humphries MJ (2010) Adhesion signalling complexes. Curr Biol 20(24):R1063–R1067. https://doi.org/10.1016/j.cub.2010.10.059 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15(4):273–288. https://doi.org/10.1038/nrm3769 CrossRefPubMedGoogle Scholar
  4. 4.
    Larjava H, Koivisto L, Heino J, Häkkinen L (2014) Integrins in periodontal disease. Exp Cell Res 325(2):104–110. https://doi.org/10.1016/j.yexcr.2014.03.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Lennon R, Randles MJ, Humphries MJ (2014) The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol 5:160. https://doi.org/10.3389/fendo.2014.00160 CrossRefGoogle Scholar
  6. 6.
    Wright DB, Meurs H, Dekkers BG (2014) Integrins: therapeutic targets in airway hyperresponsiveness and remodelling? Trends Pharmacol Sci 35(11):567–574. https://doi.org/10.1016/j.tips.2014.09.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Allen S, Moran N (2015) Cell adhesion molecules: therapeutic targets for inhibition of inflammatory states. Semin Thromb Hemost 41(6):563–571. https://doi.org/10.1055/s-0035-1556588 CrossRefPubMedGoogle Scholar
  8. 8.
    Bravatà I, Allocca M, Fiorino G, Danese S (2015) Integrins and adhesion molecules as targets to treat inflammatory bowel disease. Curr Opin Pharmacol 25:67–71. https://doi.org/10.1016/j.coph.2015.11.007 CrossRefPubMedGoogle Scholar
  9. 9.
    Coelho NM, McCulloch CA (2016) Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 365(3):521–538. https://doi.org/10.1007/s00441-016-2440-8 CrossRefPubMedGoogle Scholar
  10. 10.
    Hamidi H, Pietilä M, Ivaska J (2016) The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer 115(9):1017–1023. https://doi.org/10.1038/bjc.2016.312 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Filla MS, Faralli JA, Peotter JL, Peters DM (2017) The role of integrins in glaucoma. Exp Eye Res 158:124–136. https://doi.org/10.1016/j.exer.2016.05.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Finney AC, Stokes KY, Pattillo CB, Orr AW (2017) Integrin signaling in atherosclerosis. Cell Mol Life Sci 74(12):2263–2282. https://doi.org/10.1007/s00018-017-2490-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903. https://doi.org/10.1242/jcs.03098 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583–3590PubMedGoogle Scholar
  15. 15.
    Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116(Pt 22):4605–4613. https://doi.org/10.1242/jcs.00792 CrossRefPubMedGoogle Scholar
  16. 16.
    Bachir AI, Zareno J, Moissoglu K, Plow EF, Gratton E, Horwitz AR (2014) Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr Biol 24(16):1845–1853. https://doi.org/10.1016/j.cub.2014.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoffmann JE, Fermin Y, Stricker RL, Ickstadt K, Zamir E (2014) Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. elife 3:e02257. https://doi.org/10.7554/eLife.02257 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D, Humphries JD, Humphries MJ (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17(12):1577–1587. https://doi.org/10.1038/ncb3257 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carisey A, Tsang R, Greiner AM, Nijenhuis N, Heath N, Nazgiewicz A, Kemkemer R, Derby B, Spatz J, Ballestrem C (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23(4):271–281. https://doi.org/10.1016/j.cub.2013.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iskratsch T, Yu CH, Mathur A, Liu S, Stévenin V, Dwyer J, Hone J, Ehler E, Sheetz M (2013) FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev Cell 27(5):545–559. https://doi.org/10.1016/j.devcel.2013.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ciobanasu C, Faivre B, Le Clainche C (2014) Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat Commun 5:3095. https://doi.org/10.1038/ncomms4095 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J (2014) Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep 4:4610. https://doi.org/10.1038/srep04610 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hernández-Varas P, Berge U, Lock JG, Strömblad S (2015) A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat Commun 6:7524. https://doi.org/10.1038/ncomms8524 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, Klingner C, Sabass B, Zent R, Rief M, Grashoff C (2015) Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat Cell Biol 17(12):1597–1606. https://doi.org/10.1038/ncb3268 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roper JA, Williamson RC, Bass MD (2012) Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 22(5):583–590. https://doi.org/10.1016/j.sbi.2012.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ (2011) A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 21(4):681–693. https://doi.org/10.1016/j.devcel.2011.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Morgan MR, Hamidi H, Bass MD, Warwood S, Ballestrem C, Humphries MJ (2013) Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 24(5):472–485. https://doi.org/10.1016/j.devcel.2013.01.027 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R (2014) E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 7(354):rs7. https://doi.org/10.1126/scisignal.2005473 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312(9):1637–1650. https://doi.org/10.1016/j.yexcr.2006.01.031 CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107(22):9944–9949. https://doi.org/10.1073/pnas.0914547107 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867. https://doi.org/10.1038/ncb0807-858 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic analysis of integrin adhesion complexes. Sci Signal 4(167):pt2. https://doi.org/10.1126/scisignal.2001827 CrossRefPubMedGoogle Scholar
  33. 33.
    Kuo JC, Han X, Yates JR III, Waterman CM (2012) Isolation of focal adhesion proteins for biochemical and proteomic analysis. Methods Mol Biol 757:297–323. https://doi.org/10.1007/978-1-61779-166-6_19 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jones MC, Humphries JD, Byron A, Millon-Frémillon A, Robertson J, Paul NR, Ng DH, Askari JA, Humphries MJ (2015) Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol 66:9.8.1–9.8.15. https://doi.org/10.1002/0471143030.cb0908s66 CrossRefGoogle Scholar
  35. 35.
    Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D, Humphries MJ (2009) Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2(87):ra51. https://doi.org/10.1126/scisignal.2000396 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schiller HB, Friedel CC, Boulegue C, Fässler R (2011) Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12(3):259–266. https://doi.org/10.1038/embor.2011.5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuo JC, Han X, Hsiao CT, Yates JR III, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13(4):383–393. https://doi.org/10.1038/ncb2216 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Byron A (2017) Clustering and network analysis of reverse phase protein array data. Methods Mol Biol 1606:171–191. https://doi.org/10.1007/978-1-4939-6990-6_12 CrossRefPubMedGoogle Scholar
  39. 39.
    Carugo O (2010) Clustering criteria and algorithms. Methods Mol Biol 609:175–196. https://doi.org/10.1007/978-1-60327-241-4_11 CrossRefPubMedGoogle Scholar
  40. 40.
    Nugent R, Meila M (2010) An overview of clustering applied to molecular biology. Methods Mol Biol 620:369–404. https://doi.org/10.1007/978-1-60761-580-4_12 CrossRefPubMedGoogle Scholar
  41. 41.
    Chen B, Fan W, Liu J, Wu FX (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. Brief Bioinform 15(2):177–194. https://doi.org/10.1093/bib/bbt039 CrossRefPubMedGoogle Scholar
  42. 42.
    Srihari S, Yong CH, Patil A, Wong L (2015) Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett 589(19 Pt A):2590–2602. https://doi.org/10.1016/j.febslet.2015.04.026 CrossRefPubMedGoogle Scholar
  43. 43.
    Byron A (2008) Proteomic analyses of integrin-based adhesion complexes. PhD Thesis. University of Manchester, Manchester, United KingdomGoogle Scholar
  44. 44.
    Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ (2012) Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12(13):2107–2114. https://doi.org/10.1002/pmic.201100487 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ (2015) A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 6:6135. https://doi.org/10.1038/ncomms7135 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Millon-Frémillon A, Aureille J, Guilluy C (2017) Analyzing cell surface adhesion remodeling in response to mechanical tension using magnetic beads. J Vis Exp 121:e55330. https://doi.org/10.3791/55330 CrossRefGoogle Scholar
  47. 47.
    Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222. https://doi.org/10.1007/978-1-4939-0685-7_14 CrossRefPubMedGoogle Scholar
  48. 48.
    Moulder R, Goo YA, Goodlett DR (2016) Label-free quantitation for clinical proteomics. Methods Mol Biol 1410:65–76. https://doi.org/10.1007/978-1-4939-3524-6_4 CrossRefPubMedGoogle Scholar
  49. 49.
    Souza GH, Guest PC, Martins-de-Souza D (2017) LC-MSE, multiplex MS/MS, ion mobility, and label-free quantitation in clinical proteomics. Methods Mol Biol 1546:57–73. https://doi.org/10.1007/978-1-4939-6730-8_4 CrossRefPubMedGoogle Scholar
  50. 50.
    Kani K (2017) Quantitative proteomics using SILAC. Methods Mol Biol 1550:171–184. https://doi.org/10.1007/978-1-4939-6747-6_13 CrossRefPubMedGoogle Scholar
  51. 51.
    Gritsenko MA, Xu Z, Liu T, Smith RD (2016) Large-scale and deep quantitative proteome profiling using isobaric labeling coupled with two-dimensional LC-MS/MS. Methods Mol Biol 1410:237–247. https://doi.org/10.1007/978-1-4939-3524-6_14 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Núñez EV, Domont GB, Nogueira FC (2017) iTRAQ-based shotgun proteomics approach for relative protein quantification. Methods Mol Biol 1546:267–274. https://doi.org/10.1007/978-1-4939-6730-8_23 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang L, Elias JE (2017) Relative protein quantification using tandem mass tag mass spectrometry. Methods Mol Biol 1550:185–198. https://doi.org/10.1007/978-1-4939-6747-6_14 CrossRefPubMedGoogle Scholar
  54. 54.
    Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE (2016) Methods for SWATH™: data independent acquisition on TripleTOF mass spectrometers. Methods Mol Biol 1410:265–279. https://doi.org/10.1007/978-1-4939-3524-6_16 CrossRefPubMedGoogle Scholar
  55. 55.
    Röst HL, Aebersold R, Schubert OT (2017) Automated SWATH data analysis using targeted extraction of ion chromatograms. Methods Mol Biol 1550:289–307. https://doi.org/10.1007/978-1-4939-6747-6_20 CrossRefPubMedGoogle Scholar
  56. 56.
    Schilling B, Gibson BW, Hunter CL (2017) Generation of high-quality SWATH® acquisition data for label-free quantitative proteomics studies using TripleTOF® mass spectrometers. Methods Mol Biol 1550:223–233. https://doi.org/10.1007/978-1-4939-6747-6_16 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120(Pt 1):137–148. https://doi.org/10.1242/jcs.03314 CrossRefPubMedGoogle Scholar
  58. 58.
    Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK (2014) A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 7(330):ra57. https://doi.org/10.1126/scisignal.2004838 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Qu H, Tu Y, Guan JL, Xiao G, Wu C (2014) Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 289(45):31001–31013. https://doi.org/10.1074/jbc.M114.580811 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pasapera AM, Plotnikov SV, Fischer RS, Case LB, Egelhoff TT, Waterman CM (2015) Rac1-dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing. Curr Biol 25(2):175–186. https://doi.org/10.1016/j.cub.2014.11.043 CrossRefPubMedGoogle Scholar
  61. 61.
    Wu JC, Chen YC, Kuo CT, Wenshin Yu H, Chen YQ, Chiou A, Kuo JC (2015) Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep 5:18476. https://doi.org/10.1038/srep18476 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lopez-Sanchez I, Kalogriopoulos N, Lo IC, Kabir F, Midde KK, Wang H, Ghosh P (2015) Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins. Mol Biol Cell 26(24):4313–4324. https://doi.org/10.1091/mbc.E15-07-0496 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Horton ER, Humphries JD, Stutchbury B, Jacquemet G, Ballestrem C, Barry ST, Humphries MJ (2016) Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol 212(3):349–364. https://doi.org/10.1083/jcb.201508080 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Swaminathan V, Fischer RS, Waterman CM (2016) The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol Biol Cell 27(7):1085–1100. https://doi.org/10.1091/mbc.E15-08-0590 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C (2017) Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130(9):1612–1624. https://doi.org/10.1242/jcs.195362 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kirchner J, Kam Z, Tzur G, Bershadsky AD, Geiger B (2003) Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J Cell Sci 116(Pt 6):975–986. https://doi.org/10.1242/jcs.00284 CrossRefPubMedGoogle Scholar
  67. 67.
    Iyer VV, Ballestrem C, Kirchner J, Geiger B, Schaller MD (2005) Measurement of protein tyrosine phosphorylation in cell adhesion. Methods Mol Biol 294:289–302PubMedGoogle Scholar
  68. 68.
    Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B (2006) Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J Cell Sci 119(Pt 5):866–875. https://doi.org/10.1242/jcs.02794 CrossRefPubMedGoogle Scholar
  69. 69.
    Chen Y, Lu B, Yang Q, Fearns C, Yates JR III, Lee JD (2009) Combined integrin phosphoproteomic analyses and small interfering RNA-based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69(8):3713–3720. https://doi.org/10.1158/0008-5472.CAN-08-2515 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Schiller HB, Hermann MR, Polleux J, Vignaud T, Zanivan S, Friedel CC, Sun Z, Raducanu A, Gottschalk KE, Théry M, Mann M, Fässler R (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15(6):625–636. https://doi.org/10.1038/ncb2747 CrossRefPubMedGoogle Scholar
  71. 71.
    Robertson J, Jacquemet G, Byron A, Jones MC, Warwood S, Selley JN, Knight D, Humphries JD, Humphries MJ (2015) Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6:6265. https://doi.org/10.1038/ncomms7265 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics 5(1):172–181. https://doi.org/10.1074/mcp.M500135-MCP200 CrossRefPubMedGoogle Scholar
  73. 73.
    Robertson J, Humphries JD, Paul NR, Warwood S, Knight D, Byron A, Humphries MJ (2017) Characterization of the phospho-adhesome by mass spectrometry-based proteomics. Methods Mol Biol 1636:235–251. https://doi.org/10.1007/978-1-4939-7154-1_15 CrossRefPubMedGoogle Scholar
  74. 74.
    Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136 CrossRefPubMedGoogle Scholar
  75. 75.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j CrossRefPubMedGoogle Scholar
  76. 76.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901 CrossRefPubMedGoogle Scholar
  77. 77.
    de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. https://doi.org/10.1093/bioinformatics/bth078 CrossRefPubMedGoogle Scholar
  78. 78.
    Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. https://doi.org/10.1093/bioinformatics/bth349 CrossRefPubMedGoogle Scholar
  79. 79.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Byron A, Humphries JD, Askari JA, Craig SE, Mould AP, Humphries MJ (2009) Anti-integrin monoclonal antibodies. J Cell Sci 122(Pt 22):4009–4011. https://doi.org/10.1242/jcs.056770 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lau HT, Suh HW, Golkowski M, Ong SE (2014) Comparing SILAC- and stable isotope dimethyl-labeling approaches for quantitative proteomics. J Proteome Res 13(9):4164–4174. https://doi.org/10.1021/pr500630a CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158. https://doi.org/10.1021/ac502040v CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    R Development Core Team (2013) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  84. 84.
    Achtert E, Kriegel H-P, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering algorithms. Lect Notes Comput Sci 5069:580–585. https://doi.org/10.1007/978-3-540-69497-7_41 CrossRefGoogle Scholar
  85. 85.
    Sharan R, Maron-Katz A, Shamir R (2003) CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19(14):1787–1799. https://doi.org/10.1093/bioinformatics/btg232 CrossRefPubMedGoogle Scholar
  86. 86.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208. https://doi.org/10.1093/bioinformatics/18.1.207 CrossRefPubMedGoogle Scholar
  87. 87.
    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Int AAAI Conf Web Soc Media. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
  88. 88.
    Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems: 1695. http://igraph.org
  89. 89.
    Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6:75–77. https://doi.org/10.1038/nmeth.1282 CrossRefPubMedGoogle Scholar
  90. 90.
    Humphries MJ (2001) Cell-substrate adhesion assays. Curr Protoc Cell Biol Chapter 9:Unit 9.1. doi:https://doi.org/10.1002/0471143030.cb0901s00 CrossRefGoogle Scholar
  91. 91.
    Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159. https://doi.org/10.1016/B978-0-12-420119-4.00012-4 CrossRefPubMedGoogle Scholar
  92. 92.
    Goldman A, Harper S, Speicher DW (2016) Detection of proteins on blot membranes. Curr Protoc Protein Sci 86:10.8.1–10.8.11. https://doi.org/10.1002/cpps.15 CrossRefGoogle Scholar
  93. 93.
    Brunelle JL, Green R (2014) Coomassie blue staining. Methods Enzymol 541:161–167. https://doi.org/10.1016/B978-0-12-420119-4.00013-6 CrossRefPubMedGoogle Scholar
  94. 94.
    Janes KA (2015) An analysis of critical factors for quantitative immunoblotting. Sci Signal 8(371):rs2. https://doi.org/10.1126/scisignal.2005966 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  96. 96.
    Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754. https://doi.org/10.1083/jcb.200911091 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A (2014) On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology 3(2):320–332. https://doi.org/10.3390/biology3020320 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Giansanti P, Tsiatsiani L, Low TY, Heck AJ (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11(5):993–1006. https://doi.org/10.1038/nprot.2016.057 CrossRefPubMedGoogle Scholar
  99. 99.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations