De Novo Design of Ligands Using Computational Methods

  • Venkatesan Suryanarayanan
  • Umesh Panwar
  • Ishwar Chandra
  • Sanjeev Kumar Singh
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)


De novo design technique is complementary to high-throughput virtual screening and is believed to contribute in pharmaceutical development of novel drugs with desired properties at a very low cost and time-efficient manner. In this chapter, we outline the basic de novo design concepts based on computational methods with an example.

Key words

ADME De novo ligand design Drug discovery Molecular docking Molecular modeling Synthetic feasibility VEGFR2 



SKS thanks Department of Biotechnology (DBT), New Delhi for providing financial support. VS and UP gratefully acknowledge DST (New Delhi) for INSPIRE Senior Research Fellowship (No. DST/INSPIRE Fellowship/2012/482) and Alagappa University for AURF (No. Ph.D./1122/AURF FELLOWSHIP/2015) respectively.


  1. 1.
    Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591CrossRefPubMedGoogle Scholar
  2. 2.
    Clark DE, Pickett SD (2000) Computational methods for the prediction of 'drug-likeness'. Drug Discov Today 5:49–58CrossRefPubMedGoogle Scholar
  3. 3.
    Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10:14–32CrossRefPubMedGoogle Scholar
  4. 4.
    Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328CrossRefPubMedGoogle Scholar
  5. 5.
    Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191CrossRefPubMedGoogle Scholar
  6. 6.
    Aparoy P, Reddy KK, Reddanna P (2012) Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem 19:3763–3778CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Po-Ssu H, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327CrossRefGoogle Scholar
  8. 8.
    Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663CrossRefPubMedGoogle Scholar
  9. 9.
    Hartenfeller M, Schneider G (2011) Enabling future drug discovery by de novo design. Wiley Interdiscip Rev Comput Mol Sci 1:742–759CrossRefGoogle Scholar
  10. 10.
    Butina D, Segall MD, Frankcombe K (2002) Predicting ADME properties in silico: methods and models. Drug Discov Today 7:S83–S88CrossRefPubMedGoogle Scholar
  11. 11.
    Takeda S, Kaneko H, Funatsu K (2016) Chemical-space-based de novo design method to generate drug-like molecules. J Chem Inf Model 56:1885–1893CrossRefPubMedGoogle Scholar
  12. 12.
    Jain SK, Agrawal A, Stahl M, Schneider P (2004) De novo drug design: an overview. Indian J Pharm Sci 66:721–728Google Scholar
  13. 13.
    Hilpert K, Ackermann J, Banner DW, Gast A, Gubernator K, Hadváry P, Labler L, Müller K, Schmid G, Tschopp TB, Waterbeemd HVD (1994) Design and synthesis of potent and highly selective thrombin inhibitors. J Med Chem 37:3889–3901CrossRefPubMedGoogle Scholar
  14. 14.
    Webber SE, Bleckman TM, Attard J, Deal JG, Kathardekar V, Welsh KM, Webber S, Janson CA, Matthews DA, Smith WW, Freer ST, Jordan SR, Bacquet RJ, Howland EF, Booth CLJ, Ward RW, Hermann SM, White J, Morse CA, Hilliard JA, Bartlett CA (1993) Design of thymidylate synthase inhibitors using protein crystal structures: the synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. J Med Chem 36:733–746CrossRefPubMedGoogle Scholar
  15. 15.
    Greer J, Erickson JW, Baldwin JJ, Varney MD (1994) Application of the three-dimensional structures of protein target molecules in structure-based drug design. J Med Chem 37:1035–1054CrossRefPubMedGoogle Scholar
  16. 16.
    Baldwin JJ, Ponticello GS, Anderson PS, Christy ME, Murcko MA, Randall WC, Schwam H, Sugrue MF, Springer JP, Gautheron P, Grove J, Mallorga P, Viadert MP, McKeever BM, Navia MA (1989) Thienothiopyran-2-sulfonamides: novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J Med Chem 32:2510–2513CrossRefPubMedGoogle Scholar
  17. 17.
    Verlinde CL, Callens M, Van Calenbergh S, Van Aerschot A, Herdewijn P, Hannaert V, Michels PA, Opperdoes FR, Hol WG (1994) Selective inhibition of trypanosomal glyceraldehyde-3-phosphate dehydrogenase by protein structure-based design: toward new drugs for the treatment of sleeping sickness. J Med Chem 37:3605–3613CrossRefPubMedGoogle Scholar
  18. 18.
    Von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefGoogle Scholar
  19. 19.
    Diana GD, Treasurywala AM, Bailey TR, Oglesby RC, Pevear DC, Dutko FJ (1990) A model for compounds active against human Rhinovirus-14 based on X-ray crystallography data. J Med Chem 33:1306–1311CrossRefPubMedGoogle Scholar
  20. 20.
    Diana GD, Treasurywala A (1991) Design of compounds active against HRV-14. Drug News Perspect 4:517–523Google Scholar
  21. 21.
    Schmidt JM, Mercure J, Tremblay GB, Pagé M, Kalbakji A, Feher M, Dunn-Dufault R, Peter MG, Redden PR (2003) De novo design, synthesis, and evaluation of novel nonsteroidal phenanthrene ligands for the estrogen receptor. J Med Chem 46:1408–1418CrossRefPubMedGoogle Scholar
  22. 22.
    Haitao Ji et al (2003) Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for Lanosterol 14α-Demethylase of fungi. J Med Chem 46:474–485Google Scholar
  23. 23.
    Liu YZ, Wang XL, Wang XY, Yu RL, Liu DQ, Kang CM (2016) De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach. J Mol Model 22:222Google Scholar
  24. 24.
    Kankanala J, Latham AM, Johnson AP, Homer-Vanniasinkam S, Fishwick CW, Ponnambalam S (2012) A combinatorial in silico and cellular approach to identify a new class of compounds that target VEGFR2 receptor tyrosine kinase activity and angiogenesis. Br J Pharmacol 166:737–748CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Böhm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13:51–56CrossRefPubMedGoogle Scholar
  26. 26.
    Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, P38, and HIV protease. J Med Chem 47:2768–2775CrossRefPubMedGoogle Scholar
  27. 27.
    Rogers-Evans M, Alanine AI, Bleicher KH, Kube D, Schneider G (2004) Identification of novel cannabinoid receptor ligands via evolutionary de novo design and rapid parallel synthesis. QSAR Comb Sci 23:426–430CrossRefGoogle Scholar
  28. 28.
    Huang Q, Li LL, Sheng-Yong Y (2010) PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. J Mol Graph Model 28:775–787CrossRefPubMedGoogle Scholar
  29. 29.
    Heikkilä T, Thirumalairajan S, Davies M, Parsons MR, McConkey AG, Fishwick CWG, Johnson AP (2006) The first de novo designed inhibitors of plasmodium falciparum dihydroorotate dehydrogenase. Bioorg Med Chem Lett 16:88–92CrossRefPubMedGoogle Scholar
  30. 30.
    Babine RE, Bleckman TM, Kissinger CR, Showalter R, Pelletier LA, Lewis C, Tucker K, Moomaw E, Parge HE, Villafranca JE (1995) Design synthesis and X-ray crystallographic studies of novel FKBP-12 ligand. Bioorg Med Chem Lett 5:1719–1724CrossRefGoogle Scholar
  31. 31.
    Heartenfeller M, Zettl H, Walter M, Rupp M, Reisen F, Proschak E, Wegen S, Stark H, Schneider G (2012) DOGS: reaction-driven de novo design of bioactive compounds. PLoS Comput Biol 8:1–12Google Scholar
  32. 32.
    Proschak E, Sander K, Zettl H, Tanrikulu Y, Rau O, Schneider P, Schubert-Zsilavecz M, Stark H, Schneider G (2009) From molecular shape to potent bioactive agents II: fragment-based de novo design. ChemMedChem 4:45–48CrossRefPubMedGoogle Scholar
  33. 33.
    Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP, Goyal S, Grover A, Sundar D (2015) Computational structure-based de novo design of hypothetical inhibitors against the anti-inflammatory target COX-2. PLoS One 10:e0134691CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Damewood JR, Lerman CL, Masek BB (2010) NovoFLAP: a ligand-based de novo design approach for the generation of medicinally relevant ideas. J Chem Inf Model 50:1296–1303CrossRefPubMedGoogle Scholar
  35. 35.
    Danziger DJ, Dean PM (1989) Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen bonding regions at protein surfaces. Proc R Soc Lond B Biol Sci 236:101–113CrossRefPubMedGoogle Scholar
  36. 36.
    Lewis RA (1990) Automated site-directed drug design: approaches to the formation of 3D molecular graphs. J Comput Aided Mol Des 4:205–210CrossRefPubMedGoogle Scholar
  37. 37.
    Nishibata Y, Itai A (1991) Automatic creation of dug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47:8985–8990CrossRefGoogle Scholar
  38. 38.
    Lewis RA, Roe DC, Huang C, Ferrin TE, Langridge R, Kuntz ID (1992) Automated site-directed drug design using molecular lattices. J Mol Graph 10:66–78CrossRefPubMedGoogle Scholar
  39. 39.
    Böhm HJ (1992) The computer program LUDI: a new simple method for the de-novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefPubMedGoogle Scholar
  40. 40.
    Tschinke V, Cohen NC (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypothesis. J Med Chem 36:3863–3870CrossRefPubMedGoogle Scholar
  41. 41.
    Rotstein SH, Murcko MA (1993) Group build: a fragment-based method for de novo drug design. J Med Chem 36:1700–1710CrossRefPubMedGoogle Scholar
  42. 42.
    Ho CMW, Marshall GR (1993) SPLICE: a program to assemble partial query solutions from three-dimensional database searches into novel ligands. J Comput Aided Mol Des 7:623–647CrossRefGoogle Scholar
  43. 43.
    Rotstein SH, Murcko MA (1993) GenStar: a method for de novo drug design. J Comput Aided Mol Des 7:23–43CrossRefPubMedGoogle Scholar
  44. 44.
    Pearlman DA, Murcko MA (1993) CONCEPTS: new dynamic algorithm for de novo design suggestion. J Comput Chem 14:1184–1193CrossRefGoogle Scholar
  45. 45.
    Gillett VJ, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov Des 3:34–50CrossRefGoogle Scholar
  46. 46.
    Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199–221CrossRefPubMedGoogle Scholar
  47. 47.
    Bohacek RS, McMartin C (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116:5560–5571CrossRefGoogle Scholar
  48. 48.
    Glen RC, Payne AWR (1995) A genetic algorithm for the automated generation of molecules within constraints. J Comput Aided Mol Des 9:181–202CrossRefPubMedGoogle Scholar
  49. 49.
    Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9:13–32CrossRefPubMedGoogle Scholar
  50. 50.
    Miranker A, Karplus M (1995) An automated method for dynamic ligand design. Proteins 23:472–490CrossRefPubMedGoogle Scholar
  51. 51.
    DeWitte RS, Shakhnovich EI (1996) SMoG de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 118:11733–11744CrossRefGoogle Scholar
  52. 52.
    Pearlman DA, Murcko MA (1996) CONCERTS: dynamic connection of fragments as an approach to de novo ligand design. J Med Chem 39:1651–1663CrossRefPubMedGoogle Scholar
  53. 53.
    Luo Z, Wang R, Lai L (1996) RASSE: a new method for structure-based drug design. J Chem Inf Comput Sci 36:1187–1194CrossRefPubMedGoogle Scholar
  54. 54.
    Murray CW, Clark DE, Auton TR, Firth MA, Li J, Sykes RA, Waszkowycz B, Westhead DR, Young SC (1997) PRO_SELECT: combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology. J Comput Aided Mol Des 11:193–207CrossRefPubMedGoogle Scholar
  55. 55.
    Todorov NP, Dean PM (1997) Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design. J Comput Aided Mol Des 11:175–192CrossRefPubMedGoogle Scholar
  56. 56.
    Nachbar RB (2000) Molecular evolution: automated manipulation of hierarchical chemical topology and its application to average molecular structures. Genet Program Evolvable Mach 1:57–94CrossRefGoogle Scholar
  57. 57.
    Globus A, Lawton J, Wipke WT (1999) Automatic molecular design using evolutionary algorithms. Nanotechnology 10:290–299CrossRefGoogle Scholar
  58. 58.
    Liu H, Duan Z, Luo Q, Shi Y (1999) Structure based ligand design by dynamically assembling molecular building blocks at binding site. Proteins 36:462–470CrossRefPubMedGoogle Scholar
  59. 59.
    Douguet D, Thoreau E, Grassy G (2000) A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 14:449–466CrossRefPubMedGoogle Scholar
  60. 60.
    Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model 6:498–516CrossRefGoogle Scholar
  61. 61.
    Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487–494CrossRefPubMedGoogle Scholar
  62. 62.
    Zhu J, Fan H, Liu H, Shi Y (2001) Structure based ligand design for flexible proteins: application of new F-Dyco block. J Comput Aided Mol Des 15:979–996CrossRefPubMedGoogle Scholar
  63. 63.
    Pegg SCH, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15:911–933CrossRefPubMedGoogle Scholar
  64. 64.
    Pellegrini E, Field MJ (2003) Development and testing of a de novo drug-design algorithm. J Comput Aided Mol Des 17:621–641CrossRefPubMedGoogle Scholar
  65. 65.
    Vinkers HM, de Jonge MR, Daeyaert FF, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Van Aken K, Janssen PA (2003) SYNOPSIS: SYNthesize and OPtimize system in silico. J Med Chem 46:2765–2773CrossRefPubMedGoogle Scholar
  66. 66.
    Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic algorithm and its application to the multi objective evolution of median molecules. J Chem Inf Comput Sci 44:1079–1087CrossRefPubMedGoogle Scholar
  67. 67.
    Nikitin S, Zaitseva N, Demina O, Solovieva V, Mazin E, Mikhalev S, Smolov M, Rubinov A, Vlasov P, Lepikhin D, Khachko D, Fokin V, Queen C, Zosimov V (2005) A very large diversity space of synthetically accessible compounds for use with drug design programs. J Comput Aided Mol Des 19:47–63CrossRefPubMedGoogle Scholar
  68. 68.
    Douguet D, Munier-Lehmann H, Labesse G, Pochet S (2005) LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem 48:2457–2468CrossRefPubMedGoogle Scholar
  69. 69.
    Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment based de novo design. J Chem Inf Model 46:699–707CrossRefPubMedGoogle Scholar
  70. 70.
    Fechner U, Schneider G (2007) Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. J Chem Inf Model 47:656–667CrossRefPubMedGoogle Scholar
  71. 71.
    Dey F, Cafl isch A (2008) Fragment-based de novo ligand design by multi objective evolutionary optimization. J Chem Inf Model 48:679–690CrossRefPubMedGoogle Scholar
  72. 72.
    Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des 72:16–26CrossRefPubMedGoogle Scholar
  73. 73.
    Hecht D, Fogel GB (2009) Novel in silico approach to drug discovery via computational intelligence. J Chem Inf Model 49:1105–1121CrossRefPubMedGoogle Scholar
  74. 74.
    Moriaud F, Doppelt-Azeroual O, Martin L, Oguievetskaia K, Koch K, Vorotyntsev A, Adcock SA, Delfaud F (2009) Computational fragment-based approach at PDB scale by protein local similarity. J Chem Inf Model 49:280–294CrossRefPubMedGoogle Scholar
  75. 75.
    Nicolaou CA, Apostolakis J, Pattichis CS (2009) De novo drug design using multiobjective evolutionary graphs. J Chem Inf Model 49:295–307CrossRefPubMedGoogle Scholar
  76. 76.
    Durrant JD, Amaro RE, McCammon JA (2009) AutoGrow: a novel algorithm for protein inhibitor design. Chem Biol Drug Des 73:168–178CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    TY T, Chang KW, Chen CY (2011) iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des 25:525–531CrossRefGoogle Scholar
  78. 78.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  79. 79.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 50(2.9):2.9.1–2.9.31CrossRefGoogle Scholar
  80. 80.
    Wang R, Liu L, Lai L, Tang Y (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. Mol Model Ann 4:379–394CrossRefGoogle Scholar
  81. 81.
    Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 9:396CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Reutlinger M, Koch CP, Reker D, Todoroff N, Schneider P, Rodrigues T, Schneider G (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for‘orphan’molecules. Mol Inform 32:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  84. 84.
    Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefPubMedGoogle Scholar
  85. 85.
    Schrödinger Release 2017–1: SiteMap, Schrödinger, LLC, New York, NY, 2017Google Scholar
  86. 86.
    Selvaraj C, Priya RB, Lee JK, Singh SK (2015) Mechanistic insights of SrtA-LPXTG blockers targeting the transpeptidase mechanism in Streptococcus mutans. RSC Adv 5:100498–100510CrossRefGoogle Scholar
  87. 87.
    Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Singh S, Prabhu SV, Suryanarayanan V, Bhardwaj R, Singh SK, Dubey VK (2016) Molecular docking and structure based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J Biomol Struct Dyn 34(11):2367–2386CrossRefPubMedGoogle Scholar
  89. 89.
    Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27:221–234CrossRefGoogle Scholar
  90. 90.
    Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44:W406–W409CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Reddy KK, Singh SK (2015) Insight into the binding mode between N-methyl Pyrimidones and prototype foamy virus integrase-DNA complex by QM-polarized ligand docking and molecular dynamics simulations. Curr Top Med Chem 15:43–49CrossRefPubMedGoogle Scholar
  92. 92.
    Aarthy M, Panwar U, Selvaraj C, Singh SK (2017) Advantages of structure-based drug design approaches in neurological disorders. Curr Neuropharmacol 15(8):1136–1155. Scholar
  93. 93.
    Schrödinger Release 2017–1: QikProp, Schrödinger, LLC, New York, NY, 2017Google Scholar
  94. 94.
    Mombelli E (2008) An evaluation of the predictive ability of the QSAR software packages, DEREK, HAZARDEXPERT and TOPKAT, to describe chemically-induced skin irritation. Altern Lab Anim 36:15–24PubMedGoogle Scholar
  95. 95.
    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105CrossRefPubMedGoogle Scholar
  97. 97.
    Suryanarayanan V, Singh SK (2015) Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through insilico screening, molecular dynamics simulation and DFT approach. J Recept Signal Transduct Res 35:370–380CrossRefPubMedGoogle Scholar
  98. 98.
    Fukunishi Y, Kurosawa T, Mikami Y, Hv N (2014) Prediction of synthetic accessibility based on commercially available compound databases. J Chem Inf Model 54:3259–3267CrossRefPubMedGoogle Scholar
  99. 99.
    Genheden S, Ulf R (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Venkatesan Suryanarayanan
    • 1
  • Umesh Panwar
    • 1
  • Ishwar Chandra
    • 1
  • Sanjeev Kumar Singh
    • 1
  1. 1.Computer Aided Drug Design and Molecular Modelling Lab, Department of BioinformaticsAlagappa UniversityKaraikudiIndia

Personalised recommendations