Skip to main content

Enhanced Molecular Dynamics Methods Applied to Drug Design Projects

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Nobel Laureate Richard P. Feynman stated: “[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […].” The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du X, Li Y, Xia Y-L et al (2016) Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:144. https://doi.org/10.3390/ijms17020144

    Article  PubMed Central  Google Scholar 

  2. Changeux JP, Edelstein S (2011) Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep. https://doi.org/10.3410/B3-19

  3. Copeland RA (2011) Conformational adaptation in drug-target interactions and residence time. Future Med Chem 3:1491–1501. https://doi.org/10.4155/fmc.11.112

    Article  CAS  PubMed  Google Scholar 

  4. Teilum K, Olsen JG, Kragelund BB (2009) Functional aspects of protein flexibility. Cell Mol Life Sci 66:2231–2247. https://doi.org/10.1007/s00018-009-0014-6

    Article  CAS  PubMed  Google Scholar 

  5. Antunes DA, Devaurs D, Kavraki LE (2015) Understanding the challenges of protein flexibility in drug design. Expert Opin Drug Discov 10:1301–1313. https://doi.org/10.1517/17460441.2015.1094458

    Article  CAS  PubMed  Google Scholar 

  6. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739. https://doi.org/10.1038/nrd2082

    Article  CAS  PubMed  Google Scholar 

  7. Swinney DC (2004) Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 3:801–808. https://doi.org/10.1038/nrd1500

    Article  CAS  PubMed  Google Scholar 

  8. Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95. https://doi.org/10.1038/nrd.2015.18

    Article  CAS  PubMed  Google Scholar 

  9. Schuetz DA, de Witte WEA, Wong YC et al (2017) Kinetics for drug discovery: an industry-driven effort to target drug residence time. Drug Discov Today 22:896–911. https://doi.org/10.1016/j.drudis.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Palamini M, Canciani A, Forneris F (2016) Identifying and visualizing macromolecular flexibility in structural biology. Front Mol Biosci 3:47. https://doi.org/10.3389/fmolb.2016.00047

    Article  PubMed Central  PubMed  Google Scholar 

  11. Aci-Sèche S, Ziada S, Braka A et al (2016) Advanced molecular dynamics simulation methods for kinase drug discovery. Future Med Chem 8:545–566. https://doi.org/10.4155/fmc.16.9

    Article  PubMed  Google Scholar 

  12. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684

    Article  PubMed  Google Scholar 

  13. Case DA, Cerutti DS, Cheatham TE et al (2017) AMBER 2017. University of California, San Francisco

    Google Scholar 

  14. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  17. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing. ACM, New York, NY, USA

    Google Scholar 

  18. Harvey MJ, Giupponi G, Fabritiis GD (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5:1632–1639. https://doi.org/10.1021/ct9000685

    Article  CAS  PubMed  Google Scholar 

  19. BiKi Technologies s.r.l., Via XX Settembre, 33/10, I-16121 Genova, Italy

    Google Scholar 

  20. Shaw DE, Deneroff MM, Dror RO et al (2007) Anton, a special-purpose machine for molecular dynamics simulation. In: Proceedings of the 34th annual international symposium on computer architecture. ACM, New York, NY, USA, pp 1–12

    Google Scholar 

  21. Loukatou S, Papageorgiou L, Fakourelis P et al (2014) Molecular dynamics simulations through GPU video games technologies. J Mol Biochem 3:64–71

    PubMed Central  PubMed  Google Scholar 

  22. Teodoro G, Kurc T, Kong J et al (2014) Comparative performance analysis of Intel Xeon Phi, GPU, and CPU: a case study from microscopy image analysis. IEEE Trans Parallel Distrib Syst 2014:1063–1072. https://doi.org/10.1109/IPDPS.2014.111

    PubMed Central  PubMed  Google Scholar 

  23. RCSB Protein Data Bank – RCSB PDB. https://www.rcsb.org/pdb/home/home.do. Accessed 25 July 2017

  24. Shan Y, Kim ET, Eastwood MP et al (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133:9181–9183. https://doi.org/10.1021/ja202726y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Piana S, Lindorff-Larsen K, Shaw DE (2013) Atomic-level description of ubiquitin folding. Proc Natl Acad Sci U S A 110:5915–5920. https://doi.org/10.1073/pnas.1218321110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151. https://doi.org/10.1016/S0009-2614(99)01123-9

    Article  CAS  Google Scholar 

  27. Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28:578–581. https://doi.org/10.1016/0009-2614(74)80109-0

    Article  CAS  Google Scholar 

  28. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  29. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566. https://doi.org/10.1073/pnas.202427399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843. https://doi.org/10.1002/wcms.31

    Article  CAS  Google Scholar 

  31. Sinko W, Miao Y, de Oliveira CAF, McCammon JA (2013) Population based reweighting of scaled molecular dynamics. J Phys Chem B 117:12759–12768. https://doi.org/10.1021/jp401587e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. https://doi.org/10.1063/1.1755656

    Article  CAS  PubMed  Google Scholar 

  33. Markwick PRL, McCammon JA (2011) Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys Chem Chem Phys 13:20053–20065. https://doi.org/10.1039/c1cp22100k

    Article  CAS  PubMed  Google Scholar 

  34. Pierce LCT, Salomon-Ferrer R, de Oliveira CAF et al (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8:2997–3002. https://doi.org/10.1021/ct300284c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hamelberg D, de Oliveira CAF, McCammon JA (2007) Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J Chem Phys 127:155102. https://doi.org/10.1063/1.2789432

    Article  PubMed  Google Scholar 

  36. de Oliveira CAF, Grant BJ, Zhou M, McCammon JA (2011) Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 7:e1002178. https://doi.org/10.1371/journal.pcbi.1002178

    Article  PubMed Central  PubMed  Google Scholar 

  37. Grant BJ, Gorfe AA, McCammon JA (2009) Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS Comput Biol 5:e1000325. https://doi.org/10.1371/journal.pcbi.1000325

    Article  PubMed Central  PubMed  Google Scholar 

  38. Skjærven L, Yao X-Q, Scarabelli G, Grant BJ (2014) Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics. https://doi.org/10.1186/s12859-014-0399-6

  39. Miao Y, Sinko W, Pierce L et al (2014) Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput 10:2677–2689. https://doi.org/10.1021/ct500090q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282. https://doi.org/10.1016/0010-4655(95)00053-I

    Article  CAS  Google Scholar 

  41. Kumar S, Rosenberg JM, Bouzida D et al (1992) THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021. https://doi.org/10.1002/jcc.540130812

    Article  CAS  Google Scholar 

  42. Mollica L, Decherchi S, Zia SR et al (2015) Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5:11539. https://doi.org/10.1038/srep11539

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mollica L, Theret I, Antoine M et al (2016) Molecular dynamics simulations and kinetic measurements to estimate and predict protein–ligand residence times. J Med Chem 59:7167–7176. https://doi.org/10.1021/acs.jmedchem.6b00632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut de Recherche Servier and the French National Research Agency (ANR-13-JSV5-0001 and ANR-15-CE20-0015). The authors wish to thank the Région Centre Val de Loire and the Ligue contre le Cancer for financial supports and the Orléans-Tours CaSciModOT at the Centre de Calcul Scientique de la Région Centre Val de Loire and the Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) for providing computer facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samia Aci-Sèche or Pascal Bonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ziada, S., Braka, A., Diharce, J., Aci-Sèche, S., Bonnet, P. (2018). Enhanced Molecular Dynamics Methods Applied to Drug Design Projects. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics