Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives

  • Abhigyan Nath
  • Priyanka Kumari
  • Radha Chaube
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)

Abstract

Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

Key words

Drug target identification Drug target interaction Feature selection Machine learning 

Notes

Acknowledgment

Partial support from UGC-CAS to RC is acknowledged.

References

  1. 1.
    Wang S, Sim TB, Kim YS, Chang YT (2004) Tools for target identification and validation. Curr Opin Chem Biol 8:371–377CrossRefPubMedGoogle Scholar
  2. 2.
    Howbrook DN, van der Valk AM, O'Shaughnessy MC, Sarker DK, Baker SC, Lloyd AW (2003) Developments in microarray technologies. Drug Discov Today 8:642–651CrossRefPubMedGoogle Scholar
  3. 3.
    Vernell R, Helin K, Müller H (2003) Identification of target genes of the p16INK4A-pRB-E2F pathway. J Biol Chem 278:46124–46137CrossRefPubMedGoogle Scholar
  4. 4.
    Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20:225–229CrossRefPubMedGoogle Scholar
  5. 5.
    Cutler P (2003) Protein arrays: the current state-of-the-art. Proteomics 3:3–18CrossRefPubMedGoogle Scholar
  6. 6.
    Sem DS, Yu L, Coutts SM, Jack R (2001) Object-oriented approach to drug design enabled by NMR SOLVE: first real-time structural tool for characterizing protein–ligand interactions. J Cell Biochem 84:99–105CrossRefGoogle Scholar
  7. 7.
    Jackson PD, Harrington JJ (2005) High-throughput target discovery using cell-based genetics. Drug Discov Today 10:53–60CrossRefPubMedGoogle Scholar
  8. 8.
    Lindsay MA (2005) Finding new drug targets in the 21st century. Drug Discov Today 10:1683–1687CrossRefPubMedGoogle Scholar
  9. 9.
    Kumari P, Nath A, Chaube R (2015) Identification of human drug targets using machine-learning algorithms. Comput Biol Med 56:175–181CrossRefPubMedGoogle Scholar
  10. 10.
    Han LY, Zheng CJ, Xie B, Jia J, Ma XH, Zhu F et al (2007) Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov Today 12:304–313CrossRefPubMedGoogle Scholar
  11. 11.
    Li Q, Lai L (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics 8:353CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Perola E, Herman L, Weiss J (2012) Development of a rule-based method for the assessment of protein Druggability. J Chem Inf Model 52:1027–1038CrossRefPubMedGoogle Scholar
  13. 13.
    Liu T, Altman RB (2014) Identifying Druggable targets by protein microenvironments matching: application to transcription factors. CPT Pharmacometrics Syst Pharmacol 3:e93CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11:10–18CrossRefGoogle Scholar
  15. 15.
    Berthold MR, Cebron N, Dill F, Gabriel TR et al (2009) KNIME - the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11:26–31CrossRefGoogle Scholar
  16. 16.
    Hofmann M, Klinkenberg R (eds) (2013) RapidMiner: data mining use cases and business analytics applications. Chapman & Hall/ CRC, Boca Raton, FLGoogle Scholar
  17. 17.
    Cook D (2016) Practical machine learning with H2O: powerful, scalable techniques for deep learning and AI. O'Reilly Media, BostonGoogle Scholar
  18. 18.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830Google Scholar
  19. 19.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672CrossRefPubMedGoogle Scholar
  20. 20.
    Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E et al (2008) SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 36:D919–D922CrossRefPubMedGoogle Scholar
  21. 21.
    Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y et al (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8:e60618CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X et al (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:104CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201CrossRefPubMedGoogle Scholar
  25. 25.
    Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34:W32–W37CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Rao HB, Zhu F, Yang GB, Li ZR, Chen YZ (2011) Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 39:W385–W390CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Du P, Wang X, Xu C, Gao Y (2012) PseAAC-builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Anal Biochem 425:117–119CrossRefPubMedGoogle Scholar
  28. 28.
    Shen HB, Chou KC (2008) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388CrossRefPubMedGoogle Scholar
  29. 29.
    Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:246–255CrossRefPubMedGoogle Scholar
  30. 30.
    Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC (2015) Pse-in-one: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Ruiz-Blanco YB, Paz W, Green J, Marrero-Ponce Y (2015) ProtDCal: a program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinformatics 16:162CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Cao DS, Xu QS, Liang YZ (2013) Propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao N, Cao DS, Zhu MF, Xu QS (2015) Protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 31:1857–1859CrossRefPubMedGoogle Scholar
  34. 34.
    Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474CrossRefPubMedGoogle Scholar
  35. 35.
    Li ZR, Han LY, Xue Y, Yap CW, Li H, Jiang L (2007) MODEL—molecular descriptor lab: a web-based server for computing structural and physicochemical features of compounds. Biotechnol Bioeng 97:389–396CrossRefPubMedGoogle Scholar
  36. 36.
    Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L (2008) Mold2, molecular descriptors from 2D structures for Chemoinformatics and Toxicoinformatics. J Chem Inf Comput Sci 48:1337–1344CrossRefGoogle Scholar
  37. 37.
    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357Google Scholar
  38. 38.
    Witten IH, Frank E, Hall MA (eds) (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  39. 39.
    Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159CrossRefGoogle Scholar
  40. 40.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452CrossRefPubMedGoogle Scholar
  41. 41.
    Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379CrossRefPubMedGoogle Scholar
  42. 42.
    Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al (2009) Human protein reference database--2009 update. Nucleic Acids Res 37:D767–D772CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abhigyan Nath
    • 1
  • Priyanka Kumari
    • 2
  • Radha Chaube
    • 1
  1. 1.Department of Zoology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of BiotechnologyDelhi Technological UniversityDelhiIndia

Personalised recommendations