Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development

  • Paolo Baesso
  • Ricardo S. Randall
  • Giovanni SenaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1761)


Light sheet fluorescence microscopy (LSFM) allows sustained and repeated optical sectioning of living specimens at high spatial and temporal resolution, with minimal photodamage. Here, we describe in detail both the hardware and the software elements of a live imaging method based on LSFM and optimized for tracking and 3D scanning of Arabidopsis root tips grown vertically in physiological conditions. The system is relatively inexpensive and with minimal footprint; hence it is well suited for laboratories of any size.

Key words

Microscopy Live imaging Morphodynamics Arabidopsis root Tracking Control software 



This work was supported by BBSRC grant BB/M002624/1.


  1. 1.
    Yuste R (2011) Imaging: a laboratory manual. CSH Press, New YorkGoogle Scholar
  2. 2.
    Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36:280–290CrossRefPubMedGoogle Scholar
  3. 3.
    Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009CrossRefPubMedGoogle Scholar
  4. 4.
    Huisken J, Stainier DYR (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Greger K, Swoger J, Stelzer EHK (2007) Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum 78:023705CrossRefPubMedGoogle Scholar
  6. 6.
    Reynaud EG, Krzic U, Greger K, Stelzer EHK (2008) Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J 2:266–275CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maizel A, von Wangenheim D, Federici F et al (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385CrossRefPubMedGoogle Scholar
  9. 9.
    Berthet B, Maizel A (2016) Light sheet microscopy and live imaging of plants. J Microsc 263:158–164CrossRefPubMedGoogle Scholar
  10. 10.
    de Luis Balaguer MA, Ramos-Pezzotti M, Rahhal MB et al (2016) Multi-sample Arabidopsis growth and imaging chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Dev Biol 419:19–25CrossRefPubMedGoogle Scholar
  11. 11.
    Lucas M, Kenobi K, von Wangenheim D et al (2013) Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci U S A 110:5229–5234CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosquete MR, von Wangenheim D, Marhavý P et al (2013) An Auxin transport mechanism restricts positive Orthogravitropism in lateral roots. Curr Biol 23:817–822CrossRefPubMedGoogle Scholar
  13. 13.
    Vermeer JEM, von Wangenheim D, Barberon M et al (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183CrossRefPubMedGoogle Scholar
  14. 14.
    von Wangenheim D, Fangerau J, Schmitz A et al (2016) Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr Biol 26:439–449CrossRefGoogle Scholar
  15. 15.
    Costa A, Candeo A, Fieramonti L et al (2013) Calcium dynamics in root cells of Arabidopsis Thaliana visualized with selective plane illumination microscopy. PLoS One 8:e75646CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Candeo A, Doccula FG, Valentini G et al (2017) Light sheet fluorescence microscopy quantifies calcium oscillations in root hairs of Arabidopsis thaliana. Plant Cell Physiol 58(7):1161–1172CrossRefPubMedGoogle Scholar
  17. 17.
    Berson T, von Wangenheim D, Takáč T et al (2014) Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol 14(252)Google Scholar
  18. 18.
    Novák D, Kuchařová A, Ovečka M et al (2015) Developmental nuclear localization and quantification of GFP-tagged EB1c in Arabidopsis root using light-sheet microscopy. Front Plant Sci 6:1187PubMedGoogle Scholar
  19. 19.
    von Wangenheim D, Daum G, Lohmann JU et al (2014) Live imaging of Arabidopsis development. Methods Mol Biol 1062:539–550CrossRefGoogle Scholar
  20. 20.
    von Wangenheim D, Hauschild R, Friml J (2017) Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. J Vis Exp.
  21. 21.
    Ovečka M, Vaškebová L, Komis G et al (2015) Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc 10:1234–1247CrossRefPubMedGoogle Scholar
  22. 22.
    Jeandupeux E, Lobjois V, Ducommun B (2015) 3D print customized sample holders for live light sheet microscopy. Biochem Biophys Res Commun 463:1141–1143CrossRefPubMedGoogle Scholar
  23. 23.
    Geusebroek JM, Cornelissen F, Smeulders A, Geerts H (2000) Robust autofocusing in microscopy. Cytometry 39:1–9CrossRefPubMedGoogle Scholar
  24. 24.
    van der Bom IMJ, Klein S, Staring M et al (2011) Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions. In: Dawant BM, Haynor DR (eds). 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011). International Society for Optics and Photonics, pp 796223–796223–15Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Paolo Baesso
    • 1
  • Ricardo S. Randall
    • 1
  • Giovanni Sena
    • 1
    Email author
  1. 1.Department of Life SciencesImperial College LondonLondonUK

Personalised recommendations