Skip to main content

Electrospinning Functionalized Polymers for Use as Tissue Engineering Scaffolds

Part of the Methods in Molecular Biology book series (MIMB,volume 1758)

Abstract

Electrospinning polymers is a versatile technique to generate fibrous, three-dimensional scaffolds for tissue engineering applications. Modifying polymers with functional groups prior to electrospinning offers the opportunity to control the spatial presentation of functional groups within the scaffold as well as incorporate multiple bioactive cues. This chapter describes methods to modify poly(ε-caprolactone) (PCL) with peptides and electrospin these peptide-PCL conjugates to functionalize a scaffold surface in a single step. Methods to adapt standard electrospinning setups to create single- or dual-peptide gradients within a single construct are also described.

Key words

  • Tissue engineering
  • Regenerative medicine
  • Electrospinning
  • Functionalized polymers
  • Biodegradable scaffold
  • Gradient biomaterials

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7741-3_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7741-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  CrossRef  PubMed  Google Scholar 

  2. James R, Toti US, Laurencin CT et al (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods Mol Biol 726:243–258

    CAS  CrossRef  PubMed  Google Scholar 

  3. Castaño O, Eltohamy M, Kim H-W (2012) Electrospinning technology in tissue regeneration. Methods Mol Biol 811:127–140

    CrossRef  PubMed  Google Scholar 

  4. Guex AG, Fortunato G, Hegemann D (2013) General protocol for the culture of cells on plasma-coated electrospun scaffolds. Methods Mol Biol 1058:119–131

    CAS  CrossRef  PubMed  Google Scholar 

  5. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    CAS  CrossRef  PubMed  Google Scholar 

  6. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    CAS  CrossRef  PubMed  Google Scholar 

  8. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241

    CAS  CrossRef  Google Scholar 

  9. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042

    CAS  CrossRef  PubMed  Google Scholar 

  10. Sun XY, Shankar R, Börner HG et al (2007) Field-driven biofunctionalization of polymer fiber surfaces during electrospinning. Adv Mater 19:87–91

    CAS  CrossRef  Google Scholar 

  11. Gentsch R, Pippig F, Schmidt S et al (2011) Single-step electrospinning to bioactive polymer nanofibers. Macromolecules 44:453–461

    CAS  CrossRef  Google Scholar 

  12. Lancuški A, Bossard F, Fort S (2013) Carbohydrate-decorated PCL fibers for specific protein adhesion. Biomacromolecules 14:1877–1884

    CrossRef  PubMed  Google Scholar 

  13. Lancuški A, Fort S, Bossard F (2012) Electrospun Azido-PCL Nanofibers for enhanced surface functionalization by click chemistry. ACS Appl Mater Interfaces 4:6499–6504

    CrossRef  PubMed  Google Scholar 

  14. Sundararaghavan HG, Burdick JA (2011) Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 12:2344–2350

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Chow LW, Armgarth A, St-Pierre J-P et al (2014) Peptide-directed spatial organization of biomolecules in dynamic gradient scaffolds. Adv Healthc Mater 3:1381–1386

    CAS  CrossRef  PubMed  Google Scholar 

  16. Harrison RH, Steele JAM, Chapman R et al (2015) Modular and versatile spatial functionalization of tissue engineering scaffolds through fiber-initiated controlled radical polymerization. Adv Funct Mater 25:5748–5757

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Wade RJ, Bassin EJ, Gramlich WM et al (2015) Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv Mater 27:1356–1362

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Sant S, Hancock MJ, Donnelly JP et al (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88:899–911

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Boyer C, Granville A, Davis TP et al (2009) Modification of RAFT-polymers via thiol-ene reactions: a general route to functional polymers and new architectures. J Polym Sci A Polym Chem 47:3773–3794

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds provided by Lehigh University. The author gratefully acknowledges helpful discussions about electrospinning with Dr. Geraldine Guex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley W. Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Chow, L.W. (2018). Electrospinning Functionalized Polymers for Use as Tissue Engineering Scaffolds. In: Chawla, K. (eds) Biomaterials for Tissue Engineering. Methods in Molecular Biology, vol 1758. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7741-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7741-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7739-0

  • Online ISBN: 978-1-4939-7741-3

  • eBook Packages: Springer Protocols