Genome-Edited Cell Lines for High-Throughput Screening

  • Patricia Dranchak
  • John J. Moran
  • Ryan MacArthur
  • Camila Lopez-Anido
  • James Inglese
  • John SvarenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1755)


Measurement of gene expression for high-throughput screening is an increasingly used technique that has been developed for not only gene dosage disorders resulting from disease-associated copy number variations, but also for induction/repression of genes modulating the severity of a disease phenotype. Traditional methods have employed transient or stable transfection of reporter constructs in which a single reporter is driven by selected regulatory elements from the candidate gene. However, individual regulatory elements are inherently unable to capture the integrated regulation of multiple enhancers at the endogenous locus, and random reporter insertion can result in neighborhood effects that impact the physiological responsiveness of the reporter. Therefore, we outline a general method of employing genome editing to insert reporters into the 3′ UTR of a candidate gene, which has been used successfully in our studies of the Pmp22 gene associated with Charcot–Marie–Tooth disease. The method employs genome editing to insert two nonhomologous reporters that maximize the efficiency of identification of biologically active molecules through concordant responses in small molecule screening. We include a number of aspects of the design and construction of these reporter assays that will be applicable to creation of similar assays in a variety of cell types.

Key words

Genomics Gene expression HTS Rare disease Reporter gene Transcription 


  1. 1.
    Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17(6):646–657. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A (2010) Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 398(1):227–238. CrossRefPubMedGoogle Scholar
  3. 3.
    Chancellor DR, Davies KE, De Moor O, Dorgan CR, Johnson PD, Lambert AG, Lawrence D, Lecci C, Maillol C, Middleton PJ, Nugent G, Poignant SD, Potter AC, Price PD, Pye RJ, Storer R, Tinsley JM, van Well R, Vickers R, Vile J, Wilkes FJ, Wilson FX, Wren SP, Wynne GM (2011) Discovery of 2-arylbenzoxazoles as upregulators of utrophin production for the treatment of Duchenne muscular dystrophy. J Med Chem 54(9):3241–3250. CrossRefPubMedGoogle Scholar
  4. 4.
    Kuznetsova T, Stunnenberg HG (2016) Dynamic chromatin organization: role in development and disease. Int J Biochem Cell Biol 76:119–122. CrossRefPubMedGoogle Scholar
  5. 5.
    Jang SW, Svaren J (2009) Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem 284(30):20111–20120CrossRefGoogle Scholar
  6. 6.
    Jones EA, Lopez-Anido C, Srinivasan R, Krueger C, Chang LW, Nagarajan R, Svaren J (2011) Regulation of the PMP22 Gene through an Intronic Enhancer. J Neurosci 31(11):4242–4250. 31/11/4242 (pii)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones EA, Brewer MH, Srinivasan R, Krueger C, Sun G, Charney KN, Keles S, Antonellis A, Svaren J (2012) Distal enhancers upstream of the Charcot-Marie-Tooth type 1A disease gene PMP22. Hum Mol Genet 21:1581–1591. ddr595 (pii)CrossRefPubMedGoogle Scholar
  8. 8.
    Bujalka H, Koenning M, Jackson S, Perreau VM, Pope B, Hay CM, Mitew S, Hill AF, QR L, Wegner M, Srinivasan R, Svaren J, Willingham M, Barres BA, Emery B (2013) MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes. PLoS Biol 11(8):e1001625. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hung HA, Sun G, Keles S, Svaren J (2015) Dynamic regulation of schwann cell enhancers after peripheral nerve injury. J Biol Chem 290(11):6937–6950. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jang SW, Lopez-Anido C, MacArthur R, Svaren J, Inglese J (2012) Identification of drug modulators targeting gene-dosage disease CMT1A. ACS Chem Biol 7(7):1205–1213. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Inglese J, Dranchak P, Moran JJ, Jang SW, Srinivasan R, Santiago Y, Zhang L, Guha R, Martinez N, MacArthur R, Cost GJ, Svaren J (2014) Genome editing-enabled HTS assays expand drug target pathways for Charcot-Marie-tooth disease. ACS Chem Biol 9(11):2594–2602. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, Martin S, Youle RJ, Inglese J (2015) Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol 10(5):1188–1197. CrossRefPubMedGoogle Scholar
  15. 15.
    Lang L, Ding HF, Chen X, Sun SY, Liu G, Yan C (2015) Internal ribosome entry site-based bicistronic in situ reporter assays for discovery of transcription-targeted lead compounds. Chem Biol 22(7):957–964. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD (2006) E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol 24(2):68–75. CrossRefPubMedGoogle Scholar
  17. 17.
    Fang J, Qian JJ, Yi S, Harding TC, GH T, VanRoey M, Jooss K (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23(5):584–590. nbt1087 (pii)CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng KC, Inglese J (2012) A coincidence reporter-gene system for high-throughput screening. Nat Methods 9(10):937. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lupski JR (2015) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol Mutagen 56(5):419–436. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carvalho CM, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17(4):224–238. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Harper AR, Nayee S, Topol EJ (2015) Protective alleles and modifier variants in human health and disease. Nat Rev Genet 16(12):689–701. CrossRefPubMedGoogle Scholar
  22. 22.
    Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3(8):466–479. CrossRefPubMedGoogle Scholar
  23. 23.
    Inglese J, Shamu CE, Guy RK (2007) Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol 3(8):438–441. CrossRefPubMedGoogle Scholar
  24. 24.
    Thorne N, Auld DS, Inglese J (2010) Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 14(3):315–324. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8(6):634–647. CrossRefPubMedGoogle Scholar
  26. 26.
    Eastwood BJ, Farmen MW, Iversen PW, Craft TJ, Smallwood JK, Garbison KE, Delapp NW, Smith GF (2006) The minimum significant ratio: a statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. J Biomol Screen 11(3):253–261. CrossRefPubMedGoogle Scholar
  27. 27.
    Tannous BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4(4):582–591. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Patricia Dranchak
    • 1
  • John J. Moran
    • 2
  • Ryan MacArthur
    • 1
  • Camila Lopez-Anido
    • 2
  • James Inglese
    • 1
    • 3
  • John Svaren
    • 2
    • 4
    Email author
  1. 1.National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleUSA
  2. 2.Waisman CenterUniversity of WisconsinMadisonUSA
  3. 3.National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA
  4. 4.Department of Comparative BiosciencesUniversity of WisconsinMadisonUSA

Personalised recommendations